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I. Introduction

An investigation of three-dimensional ultrasonic mammography has been completed. The ul-
timate goal of the research has been to lay the foundations for improved diagnosis of breast cancer
by quantitative, high-resolution three-dimensional ultrasonic imaging. This goal has been reached
by a thorough program that synthesizes recent advances in tissue modeling, adaptive imaging, in-
strumentation, and signal processing. The final results of the research are believed to comprise a
major advance in quantitative three-dimensional ultrasonic mammography.

Improved resolution, accurate quantitative information on tissue properties, and precise deter-
mination of three-dimensional breast structure can provide crucial new information for detection,
diagnosis, and monitoring of breast cancer. Three-dimensional quantitative ultrasonic imaging of
breast tissue is now possible using novel inverse scattering methods invented by the Principal In-
vestigator and coworkers. Use of full time-domain scattering information provides images with
high point resolution, contrast resolution, and quantitative accuracy without significant artifacts.
Nonlinear forms of these methods provide a robust approach to adaptive imaging that is based on
compensation for three-dimensional scattering from actual tissue structure. Unlike previous adap-
tive imaging methods based on assumptions of phase-screen aberrators and point scatterers, these
methods provide aberration correction ideally suited to distributed inhomogeneous tissue like the
breast.

A unique and innovative aspect of the research has been the use of realistic tissue models for
ultrasonic propagation through breast tissue. Such models have been shown to realistically model
wavefront distortion in the human abdominal wall, but have not to date been applied to the human
breast. Tissue modeling techniques employ tissue maps obtained from specimen cross sections
as well as from newly available high-resolution volume photographic data. Calculated scatter-
ing from these tissue models provides accurate characterization of ultrasonic propagation within
breast tissue and realistic data for quantitative imaging algorithms. The above studies have applied
breakthroughs from tissue modeling, inverse scattering, and signal processing to the critical appli-
cation of ultrasonic mammography. Quantitative two- and three-dimensional images reconstructed
from simulated and measured scattering data show the practical applicability of the new methods
to clinical breast cancer imaging. The results of this research program will make possible new
mammographic applications of ultrasound that will provide clinicians with previously unavailable
information and detail. The end result will be a lower-cost, more effective, and safer modality for
diagnosis, detection, and monitoring of breast cancer.




I1. Body of Report

Below, the accomplishments of the three-year research program are summarized under the four
categories of the approved Statement of Work. Details are given for how these accomplishments
fit into the overall research plan. Greater detail is provided by the publications included in the
Appendices section.

A. Quantitative Imaging Algorithm Development

In this USAMRMC-funded Breast Cancer Research Program project, great progress has been
made on development of new quantitative imaging algorithms for three-dimensional ultrasonic
mammography. The primary achievement in this area was development, implementation, and
testing of a novel time-domain quantitative imaging method incorporating aberration correction
[1]-[4]. Refs. [1], [3], and [4] are included as Appendices A, B, and C of this report.

The imaging portion of the present research began with a nonlinear (aberration-corrected) im-
plementation of a method for quantitative imaging using eigenfunctions of the scattering operator
[5]-[6]. Preliminary work on iterative nonlinear inverse scattering, with application to quantitative
imaging of strongly scattering media such as the human breast, showed promise for the potential of
aberration correction to improve quantitative ultrasonic mammography. Since the nonlinear eigen-
function method provides a simple approach to aberration correction (improved reconstructions are
obtained using numerical retransmission of eigenfunctions into the estimated medium), this pro-
cedure is much more efficient than previously available nonlinear inverse scattering methods. This
form of nonlinear aberration correction, in conjunction with the new time-domain imaging method
described above, provide all the capabilities required for the proposed method of three-dimensional
quantitative ultrasonic mammography. Such aberration correction was later incorporated into the
more efficient time-domain imaging method described below.

A time-domain diffraction tomography method, specifically tailored to ultrasonic mammogra-
phy, has been the primary focus of the quantitative imaging portion of this research. This method
allows quantitative, high-resolution images to be obtained using direct synthetic-aperture process-
ing of time-domain scattered fields. An archival manuscript regarding the method was completed,
revised, and published during the second year of this project and is included as Appendix A of this
report [1].

The new time-domain diffraction tomography method [1]-[4], which is specifically designed
for ultrasonic mammography, allows quantitative, high-resolution images to be obtained using
direct synthetic-aperture processing of time-domain scattered fields. This method provides tomo-
graphic images of inhomogeneous media using scattering measurements made on a surface sur-
rounding the medium of interest, e.g., on a circle for two-dimensional problems or on a sphere for
three-dimensional problems. Images of compressibility variations are then reconstructed using co-
herent combination of the far-field scattered waveforms, delayed and summed in a manner that nu-
merically focuses on the unknown medium. This approach is closely related to synthetic aperture
imaging; however, unlike conventional synthetic-aperture methods, the present method provides
quantitative reconstructions of compressibility variations, analogous to frequency-compounded fil-
tered backpropagation images weighted by the spectrum of the incident wave. A complete descrip-
tion of the method, with example two-dimensional and three-dimensional reconstruction results, is




given in Ref. [1], included as Appendix A of this report. A brief abstract describing the work [2],
presented at Forum Acusticum 99, is included in the Appendix K.

Additional results, including the reconstructions from experimentally measured ultrasonic scat-
tering data, were presented at the 1999 IEEE Ultrasonics Symposium in November 1999; a pub-
lished manuscript from the Symposium Proceedings [3] is included here as Appendix B. These
experimental reconstructions show considerable promise for breast cancer detection. Particularly
encouraging is the fact that sub-resolvable structures appear as smoothed variations rather than as
speckle.

Work continued on the new time-domain imaging method with implementation of methods for
nonlinear aberration correction. Such correction provides improved synthetic focusing capability
based on medium models determined from quantitative image data. In one approach, improved
images are reconstructed using numerical propagation of wavefields into estimates of the unknown
medium [5, 8]. In another, much more efficient approach, the quantitative sound-speed reconstruc-
tion obtained by the time-domain imaging method is employed to determine time shifts that, when
applied to the measured scattering data, compensate for focus aberration caused by inhomogeneous
breast tissue [4]. An efficient implementation, in which the necessary line integrals are performed
using a DDA (digital differential analyzer) method, allows each iteration to be performed as rapidly
as the initial linear reconstruction. Results obtained using this method were presented at the DoD
Era of Hope meeting [9] (abstracts provided in Appendix K)) and are described in detail in Ref. [4]
(Appendix C).

The capabilities of the new time-domain imaging method are exciting for several reasons. First,
the images are both higher in quality and more efficiently computed than conventional single-
frequency quantitative images. The high point and contrast resolution, as well as absence of arti-
facts usually associated with diffraction tomography, suggests that this method will be very useful
for detection and characterization of breast lesions. Second, because of the close analogy between
the new method and delay-and-sum imaging, the new method could be implemented in hardware
using beamforming technology already present on digital ultrasound scanners. Third, the quanti-
tative reconstructions provided by the new method allow aberration correction to be implemented
much more robustly than possible in conventional pulse-echo imaging. The new time-domain
method also has the capability to incorporate other imaging techniques (e.g., time-gain compensa-
tion and harmonic imaging) currently used in clinical and experimental B-scan systems.

B. Tissue Modeling

Greatly improved modeling for ultrasound-breast tissue interaction have been achieved in the
research reported here through advances both in numerical techniques and in tissue modeling.
These advances are described below.

A finite-difference time-domain simulation of ultrasonic propagation through cross-sectional
models of chest wall tissue [10, 11] generated several important results directly relevant to the
simulation of propagation through breast tissue. First, this work expanded upon previous models
[12, 13] by including tissue-dependent absorption effects. The absorption model developed was an
important part of the later two-dimensional and three-dimensional simulations of ultrasonic scatter-
ing from breast tissue. Second, the chest study contained an analysis of the frequency dependence
of ultrasonic wavefront distortion. A comparison of distortion effects for varying pulse center




frequencies showed that, for soft tissue paths through the chest wall, energy level and waveform
distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations in-
crease to a lesser degree. Since breast tissue has been observed to be more strongly scattering than
other soft tissues [14], these results are of particular importance for ultrasonic mammography. A
full description of this study, with numerical results including statistical summaries, is given in
Ref. [11], included here as Appendix D. An abstract describing the work, presented at the 136th
Meeting of the Acoustical Society of America, is included in the Appendix K.

In accordance with the Statement of Work, scattering was computed for canonically-shaped
inhomogeneities including spheres, cylinders, and rectangular slabs. Time-domain scattered fields
were computed using exact solutions [15] for spheres and cylinders with sound speed and den-
sity different from the surrounding medium. Time-domain scattered fields were also computed,
using a weak scattering approximation, for rectangular slabs with a sound speed different from
the surrounding medium. The purpose of these computations was to provide definitive test data
for quantitative imaging algorithms. Example reconstructions based on these computations are
provided in Ref. [1], provided as Appendix A.

A new k-space method was implemented for simulating wave propagation in soft tissue [16].
Numerical results, including quantitative comparisons of accuracy, showed that the k-space method
can achieve very accurate results for large-scale ultrasonic propagation through soft tissue. The
computational efficiency obtained with the new k-space method is much greater than that of ex-
isting finite difference or pseudospectral methods. The computational method is also fully paral-
lelizable, since most of the computational load can be associated with execution of multithreaded
fast Fourier transforms. The method is described and quantitatively analyzed in Ref. [16], included
here as Appendix E.

Work continued with optimization of speed and accuracy of the k-space method for scattering
computations. A collaborative effort with Weidlinger Associates and the University of Rochester
provided detailed quantitative comparisons between a new k-space method and a state-of-the-art
pseudospectral solver. This study showed that the k-space method has strong advantages for large-
scale simulations of propagation through soft tissue. In particular, the k-space code allows accurate
results to be obtained with much larger time steps and fewer independent variables, so that the
k-space code is superior both in computational speed and in storage requirements. Both of these
considerations are critical for three-dimensional computations of scattering from breast tissue. The
comparison was presented at the 1999 IEEE Ultrasonics Symposium and has been published in the
proceedings of that symposium; a copy of that publication is included here as Appendix F [17].

Knowledge gained from the abovementioned comparison project led to a number of improve-
ments in the k-space method, including improved computational efficiency, more accurate interpo-
lation of simulated pressure signals, and more effective methods to compute scattering from media
including discontinuities. These improvements were reported in a presentation to the Acoustical
Society of America [8], (abstract provided in Appendix K). These comparisons, as well as new
analysis that explains the remarkable stability and accuracy of the k-space method, greatly im-
proved the extensively revised version of the archival paper [16] that is provided here as Appendix
E.

A modified k-space method that solves coupled first-order acoustic propagation equations was
also developed during the project. Like k-space methods based on second-order wave equations,
this method is exact for homogeneous media, unconditionally stable for “slow” (c(x) < co) me-




Figure 1: Ultrasonic propagation of a 2.5 MHz pulse through a two-dimensional breast cross-
sectional model obtained from a segmented, stained breast tissue cross section. An area of 167 x
50 mm? is shown.

dia, and highly accurate for general weakly scattering media. In addition, unlike previous k-
space methods, the form of the method allowed straightforward inclusion of relaxation absorption
and perfectly matched layer (PML) nonreflecting boundary conditions. A technique for reduction
of Gibbs phenomenon artifacts, in which compressibility and exponentially-scaled density func-
tions are smoothed by half-band filtering, was also introduced. When employed together with
this smoothing technique, this k-space method provides high accuracy for media including dis-
continuities, high-contrast inhomogeneities, and scattering structures smaller than the spatial grid
resolution. The results are described in detail in Ref. [18], included here as Appendix G.

Once a robust, efficient three-dimensional method for computation of ultrasonic propagation
was established, work on mapping of breast tissue became a high priority. In collaboration with
colleagues at the University of Rochester, cross-sectional breast tissue specimens have been sec-
tioned and stained for high-resolution segmentation by tissue type. One such tissue cross section
is shown, together with a computed ultrasonic pulse propagating within the tissue, in Fig. 1. Simu-
lations of point-source propagation, focusing, and transmit and receive focus correction have been
performed employing these cross-sectional breast tissue models. Focus degradation for breast
tissue was shown, consistent with previous experimental results [14], to be greater than that for
abdominal wall tissue. These results will be formally reported in a forthcoming paper [19].

Also related to the breast modeling effort was a study of empirical relationships between acous-
tic parameters of human soft tissues, completed and published during 2000 ([20], included as Ap-
pendix H). This study showed that sound speed, density, and compressibility variations are all
closely (and nearly linearly) related for human soft tissues, so that measurements or estimates of
one of these parameters can be used to obtain useful values for the others. In addition, the non-
linearity parameter and attenuation coefficient of soft tissues were found to correlate with sound
speed, density, and compressibility, although correlations were lower, particularly for attenuation
coefficients. This work is crucial to current efforts in obtaining realistic 3D breast tissue models
from the Visible Woman data set [21].

Because of the remarkable accuracy and efficiency of the new k-space method, a three-
dimensional version of this method, incorporating the absorption model of Ref. [11] (Appendix D),




Figure 2: Three frames showing ultrasonic propagation of a 1 MHz pulse through a two-
dimensional breast cross-sectional model obtained from the Visible Woman data set. Each panel
shows an area of 97 X 69 mm?.

was employed for three-dimensional computations of propagation through breast tissue. To obtain
realistic three-dimensional tissue models, photographic image data from the Visible Woman data
set [21] was analyzed to obtain quantitative maps of breast tissue for simulation studies and testing
of imaging algorithms. A method in which hue, saturation, and value are mapped to tissue type
was applied; this method also incorporates nonlinear processing to enforce uniformity among mul-
tiple layers in three-dimensional breast models. An example two-dimensional simulation, using
the k-space method and a Visible Woman breast model, is shown in Fig. 2.

The three-dimensional k-space method and new tissue mapping methods were used to perform
3D simuations of ultrasonic propagation through breast tissue. Full details are given in Ref. [22],
included here as Appendix I. Breast tissue models were created by processing of volumetric pho-
tographic data from the Visible Woman project. Tissue types were empirically mapped to hue,
saturation, and value parameters of the photographic data; acoustic parameters of tissue were then
mapped using empirical linear relationships between mass density, sound speed, and ultrasonic
absorption. Computations of ultrasonic propagation were performed in two and three dimensions
using a k-space method incorporating tissue-dependent absorption and reduced-reflection bound-
ary conditions. The results showed wavefront distortion effects similar to measurements on breast
tissue. Wavefront distortion was significantly more severe for the three-dimensional simulations
than for the two-dimensional simulations, indicating that three-dimensional propagation effects are
important to practical problems of ultrasonic mammography.

C. Quantitative Imaging Algorithm Implementation

Implementation of quantitative imaging algorithms, including the time-domain diffraction to-
mography method and the nonlinear eigenfunction method described above, has been primarily
performed using simulated data. Initial quantitative reconstructions performed using the time-
domain diffraction tomography method are shown in Ref. [1] (Appendix A) for simulated two-
dimensional and three-dimensional scattering data. These results are promising for ultrasonic
mammography. As discussed below in section D (Evaluation and Comparison of Results), time-
domain quantitative images show parametric accuracy, high resolution, and few artifacts. Effects
of limited scattering data, shown in Fig. 3 of Appendix A for the 2D case, indicate that accurate
images can be obtained without the necessity of apertures that entirely enclose the breast.




Experimental testing of the new time-domain quantitative imaging method, in collaboration
with colleagues at the University of Rochester, was also performed. Tissue-mimicking phan-
toms composed of agar gel with glass spheres were constructed. High-quality reconstructions ob-
tained using time-domain scattering data, measured with the 2048-element University of Rochester
ring transducer [23], were used as input for testing of the new time-domain quantitative imaging
method. Example reconstructions from experimental data are shown in Ref. [3], included in this
report as Appendix B. As discussed below in Section D., these reconstructions show that phantoms
containing tissue-like random scattering structure can be imaged effectively with the new method.
These reconstructions show great promise for practical implementation of the new time-domain
diffraction tomography method for breast imaging in vivo.

Nonlinear aberration correction for the new time-domain inverse scattering method was also
implemented and tested using simulated data (from the breast tissue models described above in
section B, Tissue Modeling). Full details are given in Ref.[4] (Appendix C). The form of the time-
domain diffraction tomography solution ([1], Appendix A) suggested that the full nonlinear inverse
scattering problem can be approximated by applying appropriate angle- and space-dependent time
shifts to the time-domain scattering data; this analogy led to a general approach to aberration cor-
rection. Two related methods for aberration correction were implemented: one in which delays are
computed from estimates of the medium using an efficient straight-ray approximation, and one in
which delays are applied directly to a time-dependent linearized reconstruction. The latter of these
methods is related to a time-domain imaging method implemented by colleagues of the Principal
Investigator [24]; their implementation was based on an eigenfunction method previously devel-
oped in collaborative work with the Principal Investigator [5]-[8]. Numerical results indicated
that these correction methods achieve substantial quality improvments for imaging of large scat-
terers. The parametric range of applicability for the time-domain diffraction tomography method
was increased by about a factor of two in the case of aberration correction.

A further advance in quantitative imaging algorithm implementation came from James F. Kelly,
a participant in the ARL Penn State Mathematics Honors Program whom the Principal Investigator
advised. Mr. Kelly investigated the utility of several deconvolution methods that can improve the
quality of limited-aperture tomographic reconstructions. His results show that substantial improve-
ment of limited-aperture quantitative images can be gained from appropriate use of inverse filtering
as well as cepstral deconvolution methods. The results are described in detail in his Honors paper,
included here as Appendix J. Such improvements could allow the quantitative imaging methods
described above to be applied to ultrasonic mammography in pulse-echo mode using conventional
clinical scanners. Quantitative tissue maps obtained in this way could be employed not only as di-
agnostic images, but as accurate tissue models for aberration-corrected pulse-echo imaging. Thus,
this approach should be of great interest for future work in practical implementation of the imaging
methods developed here.

D. Evaluation and Comparison of Results

Analysis of the initial time-domain imaging results for simulated data is given in Ref. [1] (Ap-
pendix A). These results indicate that high quantitative accuracy can be achieved. Computations
of point-spread functions (Fig. 2 in Appendix A) show that the time-domain method yields higher
point and contrast resolution than single-frequency diffraction tomography. For the 3D case, the




level of the first sidelobe is reduced by 13 dB, while the second sidelobe is reduced by 18 dB.
Because of the broadband scattering information employed, the width of the main lobe indicates
point resolution of features smaller than one-half wavelength at the center frequency. Evaluation
of quantitative accuracy (Fig. 4) shows that the time-domain diffraction tomography method pro-
vides parametric accuracy similar to established single-frequency methods while showing much
more immunity from artifacts.

The new nonlinear aberration correction methods described above provide high quantitative ac-
curacy even for imaging of large inhomogeneities for which the Born approximation does not hold.
Quantitative analysis was also performed for images obtained using these aberration-corrected in-
verse scattering methods ([4], Appendix C). This analysis indicates the relative advantages and
disadvantages of the two aberration-correcton approaches investigated. In the case of reconstruc-
tion of strongly-scattering cylinders (Fig. 1 of Appendix C) the initial (Born) reconstruction shows
mainly the edges of the cylinder; further iterations using adaptive focus correction improve the
accuracy within the cylinder interior. This process somewhat resembles the inverse scattering
method of layer stripping, in which an unknown medium is iteratively reconstructed with each
iteration probing further into the medium interior. In the case of adaptive delays applied to the
time-domain scattering potential, the initial reconstruction captures the cylinder interior very well.
Further iterations slightly increase the reconstructed contrast near the edges, but also introduce ar-
tifacts not present in the initial reconstruction. For the reconstructions shown in this figure, images
of size 128 x 128 pixels were computed from time-domain scattering data for 96 incident-wave
directions and 384 measurement directions. The computation time required on a 650 Mhz Athlon
processor was about 6 CPU minutes per iteration for the ¢ = 0 image criterion (about 38 minutes
total for the six iterations performed) and about 45 CPU minutes per iteration for the ¢ = Zpcax
criterion.

Previous qualitative studies of the validity of the Born approximation [1] have established
a threshold for valid Born reconstructions at ka - v ~ 2, which corresponds to a normalized
RMS error of about 0.5 (Fig. 2 in Appendix C). Given this somewhat arbitrary threshold for the
maximum allowable error, both aberration correction methods employed here have a similar range
of validity, up to about ka-y ~ 4. Thus, either approach extends the parametric range of validity for
time-domain diffraction tomography by about a factor of two. Each image criterion also introduces
characteristic artifacts. The ¢ = 0 criterion with adaptive focusing acts in part as a low-pass filter to
reconstructions, consistent with the well-known low-pass filtering effect of conventional diffraction
tomography. The ¢ = .. criterion introduces edge artifacts that have the qualitative effect of
erroneously sharpening images. Still, notable is that adaptive demodulation from the waveform
v(t), as employed in Ref. [24], may provide more robust reconstruction quality, particularly for
scattering data corrupted by noise.

Quantitative evaluation of the k-space method for simulation of ultrasonic propagation has been
performed and is reported in Refs. [16] (Appendix E) and [17] (Appendix F). These results show
that the k-space method provides much higher accuracy than finite-difference or pseudospectral
methods. A particularly striking result is that simulated ultrasonic waves can propagate many
thousands of wavelengths without distortion [8]. Since this accuracy allows relatively large spatial
and time steps to be employed, this method is ideal for large-scale 3D computations like the breast
simulations reported in Ref. [22] (Appendix I).

The new adaptation of the k-space method to coupled first-order propagation equations, which




incorporates perfectly matched layer absorbing boundary conditions and relaxation-process ab-
sorption, was also quantitatively evaluated. ([18], Appendix G). The implementation of relaxation-
process absorption was found to agree well with theoretical predictions. The new k-space method
was shown to exhibit temporal accuracy almost identical to the k-space method of Ref. [16]. In
addition, the use of coupled first-order equations in the new k-space method can provide greater
accuracy for strongly-scattering media. These advantages are illustrated in Ref. [18] (Appendix G)
using a benchmark computation for a 2 mm “bone” cylinder, introduced in Ref. [16]. Both before
and after smoothing of the model medium, the present k-space method achieves much higher accu-
racy than the previous method (L? error, relative to an exact series solution, was 0.2292 vs. 0.3060
before smoothing; 0.0263 vs. 0.2687 after smoothing). Greatly improved accuracy was also ob-
tained for modeled scattering from a bone-mimicking cylinder of sub-grid resolution size (radius
0.02 mm). In each of these cases, artifacts are greatly reduced in the computations employing the
present k-space method.

Models constructed for simulation of propagation through breast tissue ([22], Appendix I) were
found to accurately mimic experimentally-measured scattering effects [14]. In Ref. [14], mean
distortion statistics found for 9 breast specimens included a mean rms arrival time fluctuation of
66.8 ns, a mean rms energy level fluctuation of 5.03 dB, and a mean waveform similarity factor
of 0.910, while the 3D simulations resulted in a mean rms arrival time fluctuation of 65.2 ns, a
mean rms energy level fluctuation of 2.56 dB, and a waveform similarity factor of 0.895. The
corresponding values for the 2D simulations were 48.5 ns, 1.82 dB, and 0.949, indicating that
3D effects are critical to accurate modeling of ultrasonic propagation in strongly scattering tissue
media such as the human breast.

Regarding the task of dissemination of results, the project has resulted to date in seven pub-
lished or accepted manuscripts, two manuscripts submitted for publication, and one academic tech-
nical report. Dissemination of the research at many scientific meetings is represented by the seven
published abstracts included below in Appendix K.

10




I11. Key Research Accomplishments
The key research accomplishments achieved during this project can be summarized as follows:

e Development of a new time-domain quantitative imaging method designed specifically for
ultrasonic mammography.

e Numerical implementation and testing of the new time-domain imaging method, showing
that this method provides high accuracy with greater efficiency than previous inverse scat-
tering methods.

e Testing of the time-domain imaging method using scattering data measured by a 2048-
element ring transducer.

e Implementation and testing of two abberation correction methods for the time-domain quan-
titative imaging method, one based on adaptive focus correction and one based on temporal
correction of time-domain reconstructions.

e Implementation of several deconvolution approaches for improved image quality in time-
domain quantitative imaging for limited-aperture scattering data.

e Implementation of a tissue-dependent absorption model for simulations of scattering and
propagation.

e Characterization of the frequency dependence of ultrasonic scattering from human soft tis-
sues.

¢ Exact computation of time-domain scattering from simple objects for testing of quantitative
imaging methods.

e Implementation and testing of a new k-space method for computation of scattering, indicat-
ing that the method is accurate and extremely efficient, and therefore ideal for 3D computa-
tions of scattering from breast tissue.

e Extension of the new k-space method to include tissue-dependent absorption, absorbing
boundary layers, and three-dimensional scattering.

e Establishment of empirical relations between acoustic properties of human tissue, including
sound speed, density, absorption, and nonlinearity parameter, for more realistic modeling of
ultrasound-tissue interaction.

e Development of realistic breast tissue models using stained tissue cross sections and photo-
graphic data from the Visible Woman data set.

e Use of the k-space method to compute time-domain scattering data from realistic 2D and 3D
breast tissue models, for analysis of wavefront distortion and testing of quantitative imaging
algorithms.

11




e Quantitative analysis of inverse scattering results, indicating that time-domain reconstruc-
tions provide much higher point resolution, contrast resolution, and freedom from artifacts
than single-frequency reconstructions.

e Quantitative analysis of aberration correction performance, indicating that the present aber-
ration correction methods significantly improve the applicability of time-domain diffraction
tomography methods to ultrasonic imaging of whole breasts for cancer detection and char-
acterization.

12




IV. Reportable Outcomes

Personnel participating in this project have included the Principal Investigator, T. Douglas
Mast, ARL Mathematics Honors Student James F. Kelly (not directly funded by the USAMRMC),
and ARL support personnel including Connie M. Emberton and April L. Brumbaugh.

Reportable outcomes for this project have included four papers published in archival journals
[1, 11, 16, 20], one additional accepted paper [18], two papers submitted to archival journals for
publication [4, 22], two papers published in the 1999 IEEE Ultrasonics Symposium Proceedings
[3, 17], and five published abstracts presented at scientific meetings [2, 8, 9, 10, 25]. All of these
publications are included below in the Appendices. Also included in the Appendices are one in-
ternal report (a paper prepared for the ARL Penn State Mathematics Honors Program by a student
working with the Principal Investigator) and a current Curriculum Vitae for the Principal Investi-
gator.

Accomplishments performed under the USAMRMC-funded project have facilitated applica-
tions for other funding support. The proposal “High-Resolution Breast Tissue Mapping using
Pulse-Echo Ultrasonography” (T. Douglas Mast, Principal Investigator) was submitted to the Con-
cept Award program of the USAMRMC. This study was not funded. An additional proposal,
“Optimized Intracavitary Ultrasound Array for Uniform Hyperthermia Treatment of Prostate Can-
cer” (Nadine B. Smith, Principal Investigator; T. Douglas Mast, Co-Principal Investigator) was
submitted to the DoD Prostate Cancer Research Program. Although this proposal was not ini-
tially funded, a revised version, “Optimized Hyperthermia Treatment of Prostate Cancer using
a Novel Intracavitary Ultrasound Array,” was submitted in 2001 and recommended for funding.
Although not a direct extension of the present ultrasonic mammography project, this project will
leverage the advanced tissue modeling techniques developed for the project reported here. An ad-
ditional proposal, “High-resolution breast tissue mapping by adaptive pulse-echo ultrasound” was
also submitted during 2001 to the USAMRMC Breast Cancer Research Program under the IDEA
mechanism. This project, a collaboration with Penn State colleagues including Richard Tutwiler,
proposes extensions of the quantitative imaging methods reported here to pulse-echo imaging using
apparatus similar to present clinical scanners.

During the span of this project, the Principal Investigator of was appointed to the position of
Assistant Professor in the Pennsylvania State University Graduate Program in Acoustics. During
the Spring of 2000, he taught a well-received upper-level graduate course on acoustic scattering.
This course included a comprehensive treatment of ultrasonic scattering by human tissues, and was
greatly enriched by the Principal Investigator’s research performed for the USAMRMC-funded
project.

A student, James F. Kelly, was added to the project team in 2000. Mr. Kelly was not directly
funded by the USAMRMC, but by the Mathematics Honors program of the Penn State Applied
Research Laboratory. He explored aspects of the time-domain inverse scattering problem, includ-
ing deconvolution of scattered wavefields, that extend the present Statement of Work (some of this
includes research into ideas discussed in the abovementioned Concept Award proposal and recent
IDEA proposal). These exploratory studies should allow the imaging methods developed under
the USAMRMC-funded research to achieve practical application even more rapidly. A summary
of Mr. Kelly’s work is given in Appendix J.
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After the scheduled end of this project, the Principal Investigator accepted employment with
Ethicon Endo-Surgery, a Johnson and Johnson company specializing in innovative, minimally-
invasive surgical devices. A no-cost extension granted by the USAMRMC has facilitated the time
and administrative support necessary for timely completion of this final report. The Principal
Investigator has continued, and will continue, to work on a part-time basis to complete the planned
dissemination of the project’s results. On the prostate cancer project described above, he will
be replaced as Co-Principal-Investigator by the eminently qualified Robert Keolian, a senior and
highly creative researcher with relevant previous experience in biomechanics, medical imaging,
and thermodynamics. If the abovementioned BCRP IDEA proposal is funded, he will work with
his colleagues at Penn State as possible to facilitate their achievement of the research goals.
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V. Conclusions

This USAMRMC-funded project has yielded considerable progress toward the goal of im-
proved diagnosis of breast cancer by three-dimensional ultrasonic imaging. Several breakthroughs
have been made which will provide a solid foundation for future practical applications of tissue
modeling and quantitative imaging in ultrasonic mammography.

Breakthroughs in the area of quantitative imaging have included invention of a new time-
domain diffaction tomography method ideal for ultrasonic mammography [1], successful imaging
of tissue-mimicking phantoms using measured scattering data [3], and implementation of a new
aberration correction approach for quantitative ultrasonic mammography [4]. The present method
is potentially of very great importance for breast cancer diagnosis for several reasons: (1) images
have higher quality than that achievable by conventional inverse scattering methods or by current
ultrasound scanners, (2) tissue parameters are computed and quantitatively imaged with high ac-
curacy, and (3) the close analogy between the new method and conventional synthetic-aperture
imaging will allow rapid implementation of the new method on hardware similar to currently used
beamformers. The additional improvement of aberration correction increases the value of this
method even more, because the strong scattering inherent to breast tissue [14] is an important
limiting factor to existing ultrasonic imaging methods.

In the area of breast tissue modeling, simulation methods have been developed that allow effi-
cient computation of scattering from fully three-dimensional models of breast tissue. A model for
tissue absorption, important for realistic simulation of scattering in breast tissue, has been imple-
mented [11]. The frequency dependence of ultrasonic scattering from soft tissue has been shown to
be a critical consideration for aberrating media such as the breast. A new k-space method has been
implemented, rigorously tested [16, 17], and extended to include absorbing boundary conditions
as well as tissue-dependent ultrasonic absorption [18]. The method has been shown to provide the
accuracy and efficiency needed for large-scale computations of ultrasonic propagation within the
human breast.

A three-dimensional version of the k-space method has been implemented for large-scale 3D
simulations of ultrasonic propagation through breast tissue [22]. Breast tissue models for use with
this simulation method have been developed using both stained cross sections of human breast
tissue and photographic image data from the Visible Woman project of the National Library of
Medicine [21]. Crucial to the development of three-dimensional models was a set of new empiri-
cal relationships between acoustic properties of human soft tissues [20]. These simulation results
show the importance of realistic 3D tissue modeling for future testing of improved ultrasonic mam-
mography methods.

Definitive aberration-corrected reconstructions have been performed for simulated scatter-
ing data obtained using detailed breast models. These results show the potential of the present
aberration-corrected ultrasonic mammography method for practical breast cancer detection and
characterization. Rapid implementation of these methods on present clinical instruments is also
possible, as shown by the encouraging results of a study on applying deconvolution methods to
improvement of limited-aperture images.

The final outcome of the successfully completed project is a novel method for early detection,
characterization, and treatment monitoring of breast cancer lesions. Results obtained over the past
three years indicate that this method can provide image quality and diagnostic information greatly
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superior to current 2D and 3D ultrasonic mammography methods. The final method should result
in a new clinical approach to ultrasonic mammography. expected to be competitive with magnetic
resonance imaging and x-ray computed tomography as a tool for breast cancer diagnosis, while
maintaining inherent advantages of ultrasound such as lower cost, ability to characterize cystic and
solid lesions, and safe nonionizing radiation.
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APPENDIX A

Wideband quantitative ultrasonic imaging by time-domain

diffraction tomography

T. Douglas Mast
Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 3 April 1999; revised 27 August 1999; accepted 30 August 1999)

A quantitative ultrasonic imaging method employing time-domain scattering data is presented. This
method provides tomographic images of medium properties such as the sound speed contrast; these
images are equivalent to multiple-frequency filtered-backpropagation reconstructions using all
frequencies within the bandwidth of the incident pulse employed. However, image synthesis is
performed directly in the time domain using coherent combination of far-field scattered pressure
waveforms, delayed and summed to numerically focus on the unknown medium. The time-domain
method is more efficient than multiple-frequency diffraction tomography methods, and can, in some
cases, be more efficient than single-frequency diffraction tomography. Example reconstructions,
obtained using synthetic data for two- and three-dimensional scattering of wideband pulses, show
that the time-domain reconstruction method provides image quality superior to single-frequency
reconstructions for objects of size and contrast relevant to medical imaging problems such as

ultrasonic mammography. The present method is closely related to existing synthetic-aperture
imaging methods such as those employed in clinical ultrasound scanners. Thus, the new method can
be extended to incorporate available image-enhancement techniques such as time-gain
compensation to correct for medium absorption and aberration correction methods to reduce error
associated with weak scattering approximations. © 1999 Acoustical Society of America.

[S0001-4966(99)04612-3]

PACS numbers: 43.20.Fn, 43.60.Rw, 43.80.Vj, 43.20.Px [ANN]

INTRODUCTION

Quantitative imaging of tissue properties is a potentially
useful technique for diagnosis of cancer and other pathologi-
cal conditions. Inverse scattering methods such as diffraction
tomography can provide quantitative reconstruction of tissue
properties including sound speed, density, and absorption.
However, although previous inverse scattering methods have
achieved high resolution and quantitative accuracy, such
methods have not yet been incorporated into commercially
successful medical ultrasound imaging systems.

Current inverse scattering methods are lacking in several
respects with respect to conventional B-scan and synthetic
aperture imaging techniques. Previous methods of diffraction
tomography, including methods based on the Born and Ry-
tov approximations,"2 and higher-order  nonlinear
approaches,3’4 have usually been based on single-frequency
scattering, while current diagnostic ultrasound scanners em-
ploy wideband time-domain signals. The use of wideband
information in image reconstruction is known to provide in-
creased point and contrast resolution,™® both of which are
important for medical diagnosis.”8

Several approaches have been used to incorporate wide-
band scattering information into quantitative ultrasonic im-
aging. One group of methods employs time-domain tomog-
raphy based on Radon-transform relationships that hold
(under the assumption of weak scattering) between scattered
acoustic fields and the reflectivity or scattering strength of
the medium. Pioneering work in this area”>!? employed mea-
surements of reflectivity in pulse-echo mode, while later
studies have incorporated aberration correction!!'?  and
multiple-angle scattering measurements.'>'* A limitation of
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these methods, however, is that the Radon transform rela-
tionship strictly holds only when the medium is insonified by
an impulsive (infinite bandwidth) wave. When pulses of fi-
nite bandwidth are employed, image quality can degrade
significantly.'®

A number of linear and nonlinear diffraction tomogra-
phy methods have been implemented using scattering data
for a number of discrete frequencies (e.g., Refs. 16-19). Al-
though use of multiple-frequency data provides improve-
ments in image quality, computational requirements for
multiple-frequency imaging are typically large because the
computational cost is proportional to the number of frequen-
cies employed. To achieve image quality competitive with
present diagnostic scanners, together with quantitative imag-
ing of tissue properties, present frequency-domain methods
may require solution of the inverse scattering problem for
many frequencies within the bandwidth of the transducer
employed. This approach thus demands a high computational
cost, so that high-quality real-time imaging may not be pres-
ently feasible using current frequency-domain inverse scat-
tering methods.

Very few previous workers have investigated direct use
of time-domain waveform data for inverse scattering meth-
ods analogous to frequency-domain diffraction tomography.
Several methods®®?! have used frequency decomposition of
scattered pulses to construct a wideband estimate of the spa-
tial Fourier transform of an unknown medium; after appro-
priate averaging and interpolation, this transform can be in-
verted to obtain a wideband Born reconstruction of the
medium. A study reported in Ref. 22 has showed that broad-
band synthetic aperture imaging using linear arrays is closely
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related to inverse scattering using filtered backpropagation.
A related method, suggested in Ref. 23, provides a time-
domain reconstruction algorithm that employs filtered back-
propagation of scattered waveforms measured on a circular
boundary. However, the time domain reconstruction formula
of Ref. 23 yields reconstructions that are less general than
multiple-frequency reconstructions obtained using the same
signal bandwidth.

Another approach, related both to multiple-frequency
methods and direct time-domain methods, has recently been
pre:sented.24 This work extends the eigenfunction method of
Ref. 19 to use the full bandwidth of the incident pulse wave-
form. In the extended method, eigenfunctions and eigenval-
ues of a scattering operator are computed to obtain a
frequency-dependent representation of the scattering me-
dium. Fourier synthesis is then applied to obtain a time-
dependent estimate of the medium. A cross-correlation op-
eration removes the time dependence of the estimate as well
as its dependence on the waveform employed.

The present paper offers a new approach to wideband
quantitative imaging: a time-domain inverse scattering
method that overcomes some of the limitations of previous
frequency-domain and time-domain quantitative imaging
methods. The new method provides tomographic reconstruc-
tions of unknown scattering media using the entire available
bandwidth of the signals employed. Reconstructions are per-
formed using scattering data measured on a surface sur-
rounding the region of interest, so that the method is well
suited to ultrasonic mammography. The reconstruction algo-
rithm is derived as a simple delay-and-sum formula similar
to synthetic-aperture algorithms employed in conventional
clinical scanners. However, unlike current clinical scanners,
the present method can provide quantitative images of tissue
properties such as the spatially dependent sound speed. Re-
constructions obtained in this manner are equivalent to re-
constructions  obtained by combining conventional
frequency-domain diffraction tomography reconstructions
for all frequencies within the signal bandwidth of interest.
The current method, however, can be even more efficient
than single-frequency diffraction tomography. The method is
applicable both to two-dimensional and three-dimensional
image reconstruction. The direct time-domain nature of the
reconstruction algorithm allows straightforward incorpora-
tion of depth- and frequency-dependent amplitude correction
to compensate for medium absorption as well as aberration
correction methods to overcome limitations of the Born ap-
proximation.

1. THEORY
A. The time-domain reconstruction algorithm

An inverse scattering algorithm, applicable to quantita-
tive imaging of tissue and other inhomogeneous media, is
derived below. For simplicity of derivation, the medium is
modeled as a fluid medium defined by the sound speed con-
trast function

2

0
c(r)?

y(r)= -1, (1
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FIG. 1. Scattering configuration. An incident pressure pulse (¢ —a- rle) is
scattered by an inhomogencous medium and the time-domain scattered pres-
sure p,(8,a,t) is measured at a radius R in the far field.
where ¢, is a background sound speed and c(r) is the spa-
tially dependent sound speed defined at all points r. For the
scope of the initial derivation, the medium is assumed to
have constant density, no absorption, and weak scattering
characteristics; extensions to the reconstruction algorithm
that overcome these limiting assumptions are discussed in
the following section.

For the model of the scattering medium represented by
Eq. (1), the time-domain scattered acoustic pressure ps(r,0)
obeys the wave equation25

5 1 &py(r,t) _ y(r) &p(r,1)
v Ps(r’t)“_?_ 2 =" 2 (2)
cy Ot Co ot

where p(r,t) is the total acoustic pressure in the medium.

The scattering configuration considered here is sketched
in Fig. 1. The medium is subjected to a pulsatile plane wave
propagating in the direction of the unit vector &,

pinc(rsa’t)'—:f(t_r'a/cO): (3)
where f is the time-domain waveform and ¢ is the back-
ground sound speed. The scattered wavefield p( 0,a,t) is
measured at a fixed radius R in the far field, where @ corre-
sponds to the direction unit vector of a receiving transducer
element. (Alternatively, if scattering measurements arc made
in the near field, the far-field acoustic pressure can be com-
puted using exact transforms that represent propagation
through a homogeneous medium. ')

A general time-domain solution for the wave equation
(2), valid for two-dimensional (2D) or three-dimensional
(3D) scattering, is then

ps(0,a,t)=j P8 a,0)e “do, 4)

where p,(0,a,) is a single frequency component of the
scattered wavefield,

1 i .
2] = — iwt
ps(aaa’w)—zﬂ_ J—m ps(o,aat)e dt, (5)
given exactly by®
ps(oya’w)=k2f(w)f GO(R - ro,(l))

X Y(ro)p(r,a,w)dVy. (6
In Eq. (6), k is the wave number w/cg and p(ry, e, ) is the
total acoustic pressure associated with the unit-amplitude in-
cident plane wave e'**To. The integral in Eq. (6) is taken
over the entire support of y in R? for 2D scattering or in R
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for 3D scattering. The free-space Green’s function, repre-
sented by G in Eq. (6), is?

i
Gy(r,w)= ZHf)l)(kr) for 2D scattering

and 0]
ikr

Gy(r,w)= for 3D scattering,

4arr
where Hgl) is the zeroth-order Hankel function of the first
kind and r is the magnitude of the vector r.

The far-field scattered pressure, when specified for all
incident-wave directions e, measurement directions 6, and
times ¢, comprises the data set to be used for reconstruction
of the unknown medium. The inverse scattering problem,
specified by Eq. (6) for a single frequency component, is to
reconstruct the unknown medium contrast y(r) using the
measured data (6, a,w).

The starting point for the present time-domain inverse
scattering method is conventional single-frequency diffrac-
tion tomography. Under the assumption of weak scattering,
one can make the Born approximation, in which the total
pressure p(a, ) in Eq. (6) is replaced by the plane wave
/¥ @ For scattering measurements made at a radius R in the
far field, the linearized inverse problem of Eq. (6) can be
then solved for any frequency component using filtered

backpropalgation,z’lé’27 ie.,

A —ikR
ya(ray= 2L f frb(o,a)

flw)
X p,(0,@,0)e* 0D dS dS,, (8)

where

) kR

Mo)==\g 5>

&(0,a)=|sin(6—a)| in2D,
and ©)

alw)= ﬂ, ®(0,a)=|6—a| in3D.

47

Each surface integral in Eq. (8) is performed over the entire
measurement circle for the 2D case and over the entire mea-
surement sphere for the 3D case. Equation (8) provides an
exact solution to the linearized inverse scattering problem for
a single frequency component of the scattered wavefield
p.(8,a,1). The resulting reconstruction, y5(r,®), has spatial
frequency content limited by the ““Ewald sphere’’ of radius
2k in wavespace.1

To improve upon the single-frequency formulas speci-
fied by Eq. (8), one can extend the spatial-frequency content
of reconstructions by exploiting wideband scattering infor-
mation. The method outlined here synthesizes a ‘‘multiple-
frequency”’ reconstruction 7y (r) by formally integrating
single-frequency reconstructions vp(r,w) over a range of
frequencies w. A generalized formula for this approach can
be written
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08w r,0)dw
ag(r)= Jo&( m),,’YB( ) ’ (10)
Joé(w)do

where () is an appropriate frequency-dependent weight-
ing function. In practice, the weighting function g(w) is cho-
sen to be bandlimited because (for a given set of physical
scattering measurements) the frequency-dependent contrast
v5(r,w) can only be reliably reconstructed for a finite range
of frequencies ® associated with the spectra of the incident
waves employed. Thus, the integrands in Eq. (10) are non-
zero only over the support of g(w) and the corresponding
integrals are finite.

Using Eq. (8), and making the definition

stj: #w)do, (11)

Eq. (10) can be written in the form

_3 @ i /,‘L(w)e_ikR
yu()= = [0 o) ch(o,a)

X ps(0,0,0)e™ 0D 7dS dSpdw. (12)

If the frequency weight ¢(w) is now specified to incor-
porate the incident-pulse spectrum f(w) and to compensate
for the frequency- and dimension-dependent coefficient
A(w),

glo)=7"—, (13)

Eq. (12) reduces to the form

=5 [ [@0a] (om0

X e~ IR+ (a=0T g, dS dS,. (14)

The choice of frequency weight from Eq. (13) allows the
multiple-frequency reconstruction formula of Eq. (12) to be
greatly simplified. Specifically, the inner integral of Eq. (14)
resembles a weighted inverse Fourier transform of the
frequency-domain scattered field p(6,a, ). To obtain an
explicit time-domain expression for yp/(r), Eq. (14) can be
rewritten using the definition of (6, @, w) from Eq. (5) to
yield

=5 | [ o0a

ps( 6,a,R/cy+

o1 (a—0)‘r)}
Co

ds,ds,, (15)

where L denotes the linear operator
L[y(1)]=2 f fw)e o (16)
0
and J{(w) is the Fourier transform of y(f) using the defini-
tion from Eq. (5).

Using the conjugate symmetry of o) lie.,
(0, a@,0)=J*(0,a,— w) for any real y(#)], the real part of
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L[ ¢(¢)] is shown to be simply (7). Similarly, using the
convolution theorem as well as the conjugate symmetry of
(1), the imaginary part of L{ ()] is seen to be an inverse
Hilbert transform of #(z),
(e () .
Im[L{¢(1)]]=— — f o dr=H [¢(n]. A7)

- T

This transform, also known as a quadrature filter, applies a
phase shift of 7/2 to each frequency component of the input

signal.
Thus, the time-domain reconstruction formula can fi-

nally be written
1
=5 [ | <1>(o,a>(ps<o,a,r)

+iH_1[ps(0’a:T)])dSadS9’ (18)

where
(a—6)-r

Co

7=Rl/cy+ (19)
The direction-dependent weight ®(8,a), which is the same
as the “filter’” employed in single-frequency filtered back-
propagation, is given for the 2D and 3D cases by Eq. (9).

Equation (18) is notable in several respects. First, it pro-
vides a linearized reconstruction that employs scattering in-
formation from the entire signal bandwidth without any fre-
quency decomposition of the scattered wavefield. Second,
the delay term 7 corresponds exactly to the delay required to
construct a focus at the point r by delaying and summing the
scattered wavefield p,( 8, a,t) for all measurement directions
0 and incident-wave directions a. Thus, the time-domain
reconstruction formula given by Eq. (18) can be regarded as
a quantitative generalization of confocal time-domain syn-
thetic aperture imaging, in which signals are synthetically
delayed and summed for each transmit/receive pair to focus
at the image point of interest. 22223

A reconstruction formula similar to, although less gen-
eral than, Eq. (18) was independently derived in Ref. 23 for
the two-dimensional inverse scattering problem. In view of
the present derivation, the method of “‘probing by plane
pulses” in Ref. 23 can be regarded to yield a multiple-
frequency reconstruction of Re[yu(r)], while the present
method yields the complex function y,,(r). In Ref. 23, this
method was proposed as a more convenient way to imple-
ment narrow-band diffraction tomography. However, the nu-
merical results given below show that the reconstruction for-
mula of Eq. (18), when directly implemented using
wideband signals, provides considerable improvement in im-
age quality over narrow-band reconstructions.

Reconstructions using Eq. (18) can be performed using
any pulse waveform. However, the frequency compounding
defined by Eq. (10) is most straightforwardly interpreted if
the frequency weight g( ») has a phase that is independent of
frequency. This criterion can be met, for instance, if the in-
cident pulse waveform f(¢) is even in time,

f=f(-1), (20)
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so that f(w) is purely real. [Similarly, if the incident pulse
waveform is odd in time, f(®) is purely imaginary and Eq.
(18) can still be employed.]

However, supposition of a frequency-independent phase
for f(w) does not result in any loss of generality. For any
linear-phase signal, such that the Fourier transform has the
form

Flo)=[f(w)]e%,
an additional delay term of magnitude { can be applied to all
scattered signals to obtain the signals associated with the
purely-real spectrum |/(w)|. In general, the scattered field
associated with a desired waveform f(#) can be determined
for an arbitrary waveform u(#) from the deconvolution op-
eration

>0, @1

fT(ﬁ})_[ps( 0, a>t)]u(l) ] (22)

[p(8,e,)]yy=F"
u(w

For stable deconvolution using Eq. (22), the desired Flw)
should not have significant frequency components outside

the bandwidth of #(w).

B. Extensions to the reconstruction algorithm

For large tissue structures at high ultrasonic frequencies,
weak scattering approximations such as the Born approxima-
tion are of limited validity. Thus, for problems of interest to
medical ultrasonic imaging, reconstructed image quality can
be improved by aberration correction methods that incorpo-
rate higher-order scattering and propagation effects. The
present time-domain reconstruction formula (18) provides a
natural framework for quantitative imaging with aberration
correction. In general, if the background medium is known
or can be estimated, the received scattered signals can be
processed to provide an estimate of the scattered field that
would be measured for the same scatterer within a homoge-
neous background medium. This approach essentially re-
moves higher-order scattering effects from the measured far
field scattering, so that a Born inversion can be performed on
the modified data; similar processes occur implicitly in many
nonlinear inverse scattering methods.?!

For example, a simple implementation of aberration cor-
rection can be derived if one makes the assumption that
background inhomogeneities result only in cumulative de-
lays (or advances) of the incident and scattered wavefronts.
This crude model does not include many propagation and
scattering effects important to ultrasonic aberration, but has
been shown to provide a reasonable first approximation of
local delays in wavefronts propagating through large-scale
tissue models. 32> Given this approximation, the total delay
for an angle ¢ and a point position r is given by

R
or(,r)= LC(i)"ldé— o’ (23)

where the integral is performed along the line that joins the
spatial points r and R, Aberration-corrected reconstruc-
tions can then be performed using Eq. (18) with 7 replaced
by the corrected delay term
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(a—6)-r
—— — +oran)+ or(Ar). 24

7—R/cy+

Improved approximations could be obtained by application
of the delay function 87(¢,r) after numerical backpropaga-
tion of the far-field scattered wavefronts through a homoge-
neous medium®**® or by compensation for both delay and
amplitude variations.*®*” More general, although much more
computationally expensive, aberration correction could also
be performed by synthetic focusing using full-wave numeri-
cal computation of acoustic fields within an estimated real-
ization of the unknown medium. A method of this kind has
been implemented, within the context of a frequency-domain
diffraction tomography method, in Ref. 19.

The present imaging method has been derived using
simplifying assumptions including zero absorption and con-
stant density for the scattering medium. However, these as-
sumptions do not substantially restrict the validity of the
method. For example, the effect of absorption can be reduced
using time-gain compensation, with or without frequency-
dependent corrections,’® of received scattered signals for
each transmit/receive pair. Such time-gain compensation
could be performed either using an estimated bulk attenua-
tion for the medium (as with current clinical ultrasound scan-
ners), or by implementation of an adaptive attenuation model
in a manner similar to the time-shift compensation scheme
discussed above.

Inclusion of density variations as well as sound speed
variations adds additional complication to the time-domain
diffraction tomography algorithm derived here. For single-
frequency diffraction tomography in the presence of sound
speed and density variations, the quantity yp(r,w) recon-
structed by Eq. (8) can be shown*® to provide an estimate of
a physical quantity that depends both on sound speed varia-
tions and density variations. In the notation used here, this
quantity can be written

1
Y (1) = Y1) = ¥(D)7,(0+ -3 V2y,(r), (25)

where the density variation is defined y,=1— po/p(1).
Thus, for time-domain reconstructions of media with density
variations, the reconstruction formula of Eq. (18) will pro-
vide the estimate

1
Y1)~ y(1) = Y1) 7,(1) + =5 V2y,(1), (26)
2K

where k, is the wave number corresponding to the center
frequency of the pulse employed. For media such as human
tissue, where density variations are fairly small and abrupt
density transitions are rare, the last two terms of Eq. (26) are
small compared to y(x), so that the reconstruction algorithm
derived above can still be regarded to provide an image of
the sound-speed variation function y(r). However, if de-
sired, a reconstruction employing pulses with two distinct
center frequencies could allow separation of sound speed and
density variations by techniques similar to those described in
Ref. 16 or 39.
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Il. COMPUTATIONAL METHODS

The time-domain inverse scattering method described
above has been tested with 2D and 3D synthetic data pre-
pared using three numerical methods: a Born approximation
method for point scatterers and 3D slabs, an exact series
solution for cylindrical inhomogeneities, and a k-space
method for arbitrary 2D inhomogeneous media.

The time-domain waveform employed for all the com-
putations reported here was

£(1)=cos(wot)e™ 127, @7

where wy=27f, for a center frequency of fo and o is the
temporal Gaussian parameter. This waveform has the real,
even Fourier transform

2
Jlw)= \Jgo (e w0mev iy em e ™) (28)
K

Values used for the computations reported here were fo
=2.5 MHz and 0=0.25 us, so that the —6 dB bandwidth
of the signal was 1.5 MHz. These parameters correspond
closely to those of an existing 2048-clement ring
transducer.*’

For the case of point scatterers, the contrast function y
was assumed to take the form

M
y(0)=2 8=y (29)

Using the far-field form of the 2D Green’s function and ne-
glecting multiple scattering, Eq. (6) for the scattered far field
can be rewritten as
i, .
po(0,0,0) =~ \ gz f@) 2 pe 0% (60)
for each frequency component of interest. Time-domain
waveforms were synthesized by using Eq. (30) for each fre-
quency with Flw)> 1073 and inverting the frequency-
domain scattered wavefield by a fast Fourier transform (FFT)
implementation of Eq. (4). The temporal sampling rate em-
ployed was 10 MHz. An analogous formula, with a different
multiplicative constant, was also employed for the 3D case.
The Born approximation was also used to compute
three-dimensional scattering for slab-shaped objects defined
by the equation

¥(r)= yoH(a,— |x))H(a,~ [y H(a,~|z|). 31
For this object, the linearized forward problem can be solved
analytically. Under the Born approximation, the frequency-
domain scattered far field has the form

ﬁs( 0’ @, (1)) = Zf( (x)) yoaxayazeikR/( 7TR)

sin[kL (a—6)-e,] sin[kL (a—6)-¢,]
kL (a—0)-e, kL, (a—0)-e,
sin[ kL ,(a—6)-e,]
kL,(a—0)-e, ’

where e, , e,, and e, represent unit vectors in the x, y, and z
directions. The time domain scattered pressure p(0,a,t) is

(32)
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obtained, as for the point scatterer case described above, by
inverse transformation of the frequency-domain wavefield
for all frequencies within the bandwidth of interest.

For 2D cylindrical inhomogeneities, an analogous pro-
cedure was followed, except that the frequency-domain scat-
tered wavefield j (0, a, w) was computed using an exact se-
ries solution? for each frequency component of interest. In
implementation of the series solution, summations were trun-
cated when the magnitude of a single coefficient dropped
below 10712 times the sum of all coefficients.

Solutions were also obtained for arbitrary 2D inhomoge-
neous media using a time-domain k-space method.*! Grid
sizes of 256X 256 points, a spatial step of 0.0833 mm, and a
time step of 0.02734 us were employed. Scattered acoustic
pressure signals on a circle of virtual receivers were recorded
at a sampling rate of 9.144 MHz. The receiver circle, which
had a radius of 3.0 mm in these computations, completely
contained the inhomogeneities used. Far-field waveforms
were computed by Fourier transforming the time-domain
waveforms on the near-field measurement circle, transform-
ing these to far-field waveforms for each frequency using a
numerically exact transformation method,'® and performing
inverse Fourier transformation to yield time-domain far-field
waveforms. All forward and inverse temporal Fourier trans-
forms, as well as angular transforms occurring in the near-
field-far-field transformation,'® were performed by FFT.

The time-domain imaging method was directly imple-
mented using Eq. (18), evaluated using straightforward nu-
merical integration over all incident-wave and measurement
directions employed. The reconstruction formula employed
can be explicitly written as

1 27 (27
m<r>=N—2;f0 jo |sin<a—6)|(ps<0,a,r>

+iH [p,(8,a,7)]|dadb,

(cos @—cos 8)-x + (sina—sin 6) -y G3)

7=R/cy+
Co

for the 2D case, where a and @ are the angles corresponding
to the direction vectors a and 8, and as

yu(r)= NZ—D J'OHJ';J':#LWIH— ﬂl(ps(l),a, 7)

+iH [py( 0,0!,7')]) sin(® ,)sin(P g)d P,

Xd0 ,dP 40 ,,
(a—60)-r
r=Rlcy+ ——, (G4
Co

a— 0=(cos @ ,sin @ ,—cos B 4sin P y) - &,

+(sin @ ,sin® ,—sin @ ysinPy)-e,

+(cos® ,—cosDy)-e,

for the 3D case, where © , and @, are direction angles for

the incident-wave direction @ and © 4 and ® 4 are direction
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FIG. 2. Point-spread functions for time-domain and single-frequency dif-
fraction tomography methods. In each panel, the vertical scale corresponds
to the relative amplitude of the reconstructed contrast ¥(r), while the hori-
zontal scale corresponds to number of wavelengths at the center frequency.
(a) Two-dimensional case. (b) Three-dimensional case.

angles for the measurement direction . For each case, the
normalization factor N was determined from Eq. (11) with
§(0)=f(w)/ fi(w) and p(w) given by Eq. (9). Before
evaluation of the argument 7 for each signal, the time-
domain waveforms were resampled at a sampling rate of 16
times the original rate. This resampling was performed using
FFT-based Fourier interpolation. The inverse Hilbert trans-
form was performed for each signal using an FFT implemen-
tation of Eq. (16). Values of the pressure signals at the time
+ were then determined using linear interpolation between
samples of the resampled waveforms. The integrals of Eqs.
(33) and (34) were implemented using discrete summation
over all transmission and measurement directions employed.

Computations were also performed using the time-
domain diffraction tomography algorithm for limited-
aperture data. For these reconstructions, the integrals of Eq.
(33) were evaluated only for angles corresponding to trans-
mitters and receivers within a specified aperture of angular
width ¢gy, €.,

|al=< ¢,/2, [6— 7| < /2. (35)
Use of a small value for ¢,, corresponds to use of a small
aperture in pulse-echo mode.
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iil. NUMERICAL RESULTS

Two-dimensional and three-dimensional point-spread
functions (PSF) for the present time-domain diffraction to-
mography method are illustrated in Fig. 2. The time-domain
reconstructions shown here, like the other time-domain re-
constructions shown in this paper, were obtained using a
incident pulse of center frequency 2.5 MHz and a Gaussian
envelope corresponding to a —6 dB bandwidth of 1.5 MHz.
Point-spread functions were determined by reconstructing a
point scatterer located at the origin. For the 2D case, in
which the point scatterer can be regarded as a thin wire,
synthetic scattering data was obtained using the Born ap-
proximation method outlined above for 16 incident-wave di-
rections and 64 measurement directions. The 3D time-
domain reconstruction was obtained using Born data for 72
incident-wave directions and 288 measurement directions,
each evenly spaced on a rectangular grid defined by the
angles ® and ®. For comparison, analogous point-spread
functions are also shown for standard frequency-domain dif-
fraction tomography reconstructions using single-frequency
(2.5 MHz) data.

For the 2D case illustrated in Fig. 2, the time-domain
PSF has a slightly narrower peak, indicating that point reso-
lution has been slightly improved by the increased band-
width employed in the time domain method. More signifi-
cantly, sidelobes of the time-domain PSF are significantly
smaller than those for the single-frequency PSF (the first
sidelobe is reduced by 7 dB, while the second is reduced by
19 dB), so that contrast resolution for time-domain diffrac-
tion tomography is seen to be much higher than for single-
frequency diffraction tomography. For the 3D case, the time-
domain reconstruction shows a much more dramatic
improvement over the single-frequency reconstruction. In
this case, the time-domain solution shows significant in-
creases in both the point resolution (PSF width at half-
maximum reduced by 27%) and contrast resolution (first
sidelobe reduced by 13 dB and second sidelobe reduced by
18 dB). Furthermore, a comparison of the PSFs for 2D and
3D time-domain reconstruction indicates that much higher
image quality is achievable for 3D time-domain imaging
than for the 2D case. This increase in image quality suggests
that the time-domain diffraction tomography method pro-
posed here may benefit from the overdetermined nature of
the general wideband 3D inverse scattering problem.‘n’43

The effect of transmit and receive aperture characteris-
tics on image quality is illustrated in Fig. 3. Panels (2) and
(b) of Fig. 3 show the point-spread function for a number of
aperture configurations, each employing 64 measurement di-
rections. Figure 3(a) shows the point-spread function for re-
constructions obtained using 1, 4, 8, and 16 incident-wave
directions. The point scatterer is clearly imaged even for the
reconstruction using one incident-wave direction. Optimal
image quality (indistinguishable from reconstructions with
64 incident-wave directions) is obtained for 16 incident-
wave directions, so that scattering data obtained using one
incident-wave direction for each group of four measurement
directions appears to be sufficient for the present reconstruc-
tion method.

The effect of limited view range on the point spread
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FIG. 3. Effect of aperture characteristics on image quality. Each panel
shows the real part of a time-domain reconstruction, Re [¥as], on a linear
grayscale with white representing the maximum amplitude of | yy(r)| and
black represents —1 times the maximum amplitude. (a) Point-spread func-
tions for the same waveform parameters as Fig. 2. Each panel shows an area
of 0.6X0.6 mm?, corresponding to one square wavelength at the center
frequency. Left to right: 1, 4, 8, and 16 incident-wave directions. (b) Point-
spread functions for aperture sizes of /2, ar, 3/2, and 2 radians, format
as in previous panel. (c) Real parts of reconstructions for a homogeneous
cylinder (a=1.0 mm, y=0.02). The arca shown in each panel is 2.0X2.0
mm?.Left to right: aperture sizes of /2, 1, 3m/2, and 2 radians.

function is also illustrated in Fig. 3. Panel (b) shows the
point-spread function for four differently limited apertures,
while panel (c) shows reconstructions of a homogeneous cyl-
inder (a=1.0 mm, y=0.02) for the same apertures. In each
case, limitation of the transmit and receive apertures to
angles near the backscatter direction (aperture size m/2) re-
sults in images that resemble a conventional B-scans. Use of
apertures corresponding to pulse-echo mode in the large-
aperture limit (aperture size ) yield higher resolution in all
directions. Using three-fourths of a circular aperture (size
3/2) yields image quality close to that for the full aperture
(277) case. The characteristics of all these images result from
the set of spatial-frequency vectors interrogated by each
group of scattering measurements.! Apertures with only a
limited range of transmit and receive directions [e.g., the
““b-scan’’ apertures shown in the first column of panels (b)
and (c)] provide only information corresponding to large
spatial frequency vectors oriented nearly on-axis, so that
such images mainly show those edges that are nearly perpen-
dicular to the axis of the aperture.

Reconstructions performed using exact solutions for
scattering from cylindrical inhomogeneities provide a
straightforward means to assess the accuracy of the time-
domain scattering method for a range of object sizes and
contrasts. A number of example reconstructions are shown in
Figs. 4 and 5. The number of measurement directions for all
cylinder reconstructions was chosen based on an empirical
test of the number required for a satisfactory image of a
homogeneous cylinder; for a cylinder of radius 1 mm, the
required number of measurement directions was determined
to be approximately 96. Based on spatial-frequency sampling
considerations, the number of measurement directions was
increased in proportion to the size of the inhomogeneous
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FIG. 4. Cross sections of reconstructed contrast functions y(r) for a cylinder of radius 1 mm, using time-domain (TD) and single-frequency (SF) diffraction
tomography. Waveform parameters are as in Fig. 1. (a) y=0.02. (b) y=0.04. (c) y=0.06. (d) y=0.08.

region to be reconstructed. Since the results shown in Fig. 3
indicate that considerably fewer incident-wave directions
than measurement directions are needed, the number of inci-
dent directions was chosen to be one-quarter the number of
measurement directions in each case.

Cross sections of time-domain and single-frequency re-
constructions, plotted in Fig. 4, show the relative accuracy of
each reconstruction method for a cylinder of 1-mm radius
and purely real contrast ranging from y= 0.02 to y=0.08.
For the synthetic scattering data in each case, 96 measure-
ment directions and 24 incident-wave directions were em-
ployed. The time-domain reconstructions show improvement
over the single-frequency reconstructions both in improved
contrast resolution (smaller sidelobes outside the support of
the cylinder) and in decreased ringing (Gibbs phenomenon)
artifacts within the support of the cylinder. However, for
increasing contrast values, both methods show similar in-
creases in phase error, as indicated by increased imaginary
parts of the reconstructed contrast. This error results from the
Born approximation, which is based on the assumption that
the incident wave propagates through the inhomogeneous
medium without distortion. Perturbations in the local arrival
time of the incident wavefront, which are more severe for
higher contrasts and larger inhomogeneities, can result in a
scattered field that is phase shifted relative to the ideal case
assumed in the Born approximation; linear inversion of this
phase-distorted data naturally results in a phase-distorted re-
construction of the scattering medium. (A complementary
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explanation of this phase error, based on the unitarity of the
scattering operator, is given in Ref. 19.)

A test of image fidelity for the time-domain reconstruc-
tion method is shown in Fig. 5. The real parts of time-
domain reconstructions are shown as grayscale images for
homogeneous cylinders with radii between 1 and 4 mm and
contrasts between y=0.02 and y=0.08. The number of
measurement directions employed for the synthetic scatter-
ing data was 96 for the 1-mm radius cylinders, 192 for the
2-mm cylinders, 288 for the 3-mm cylinders, and 384 for the
4-mm cylinders. In each case, four incident-wave directions
per measurement direction were used. The first row of this
figure corresponds to the time-domain reconstructions shown
in Fig. 4.

The images shown in Fig. 5 provide a basis for evaluat-
ing the ability of the present time-domain diffraction tomog-
raphy method to image homogeneous objects of various
sizes and contrasts. In this figure, images of Re[ y,,] show
uniform quality for small cylinder sizes and contrasts, but
poorer image quality for larger sizes and contrasts. For the
largest size and contrast employed (a=4.0 mm, y=0.08),
the reconstruction primarily shows the edges of the cylinder
and fails to image the interior. Particularly notable is that the
“matrix>> of images in Fig. 5 is nearly diagonal; that is, a
linear increase in object contrast causes image degradation
comparable to a corresponding linear increase in object size.
Thus, a nondimensional parameter directly relevant to image
quality for homogeneous objects is ka 7, where £ is a domi-
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FIG. 5. Images of time-domain reconstructions for cylinders of varying
radius @ and contrast . Each panel shows the real part of the reconstructed
contrast, Re [ 7,4(r)], for a pulse of center frequency 2.5 MHz and —6 dB
bandwidth 1.5 MHz. The area shown in each panel is 2aX2a. All images
are shown on a linear, bipolar gray scale where white represents the maxi-
mum amplitude of |y, (r)| and black represents —1 times the maximum
amplitude.

nant wave number, a is the object radius, and 7y is the object
contrast. Using the wave number ko= 10.472 rad/mm corre-
sponding to the center frequency of 2.5 MHz and a sound
speed of 1.5 mm/us, the reconstructions shown in Fig. 5
indicate that the interior of the cylinder is imaged satisfacto-
rily for the approximate range ka y<2.5. This result is con-
sistent with a previous study of single-frequency diffraction
tomography, in which adequate Born reconstructions of cyl-
inders were obtained for the parameter range ka y< 224

Reconstructions for several scattering objects without
special symmetry are shown in Fig. 6. All of these recon-
structions were performed using synthetic data produced by
the k-space method described in Ref. 41. Synthetic scattering
data were computed for 64 incident-wave directions and 256
measurement directions in each case. The first panel shows a
reconstruction of a cylinder of radius 2.5 mm and contrast
y=—0.0295 with an internal cylinder of radius 0.2 mm and
contrast y=0.0632. These contrast values correspond, based
on tissue parameters given in Ref. 32, to the sound-speed
contrasts of human skeletal muscle for the outer cylinder and
of human fat for the inner cylinder. The second panel shows
a reconstruction of a 2.5-mm-radius cylinder with random
internal structure. The third reconstruction shown employed
a portion of a chest wall tissue map from Ref. 45. In this
case, the synthetic data was obtained using a tissue model*
that incorporates both sound speed and density variations, so
that the reconstructed quantity is given by Eq. (26). In Fig.
6(c), black denotes connective tissue (y=— 0.1073, v,
=0.1134), dark gray denotes muscle (y= —0.0295, v,
=0.0543), and light gray denotes fat (y=0.0632, v,
=—0.0453).

The real part of each reconstruction in Fig. 6 shows
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FIG. 6. Time-domain reconstructions from full-wave synthetic data for three
arbitrary scattering objects. Each row shows the actual (purely real) contrast
function y together with the real and imaginary parts of the reconstructed
contrast function y,, using the same linear bipolar gray scale for each
panel. Each panel shows a reconstruction area of 5X5 mm?. (a) Cylinder,
radius 2.5 mm, with an internal cylinder of radius 0.2 mm. (b) Cylinder,
radius 2.5 mm, with random internal structure. (c) Tissue structure, with
variable sound speed and density, from chest wall cross section 5L in
Ref. 45.

good image quality, with high resolution and very little evi-
dence of artifacts. Particularly notable is the accurately de-
tailed imaging of internal structure for the random cylinder
and the chest wall cross section. As expected, the density
variations present in the chest wall cross section have not
greatly affected the image appearance; there is, however, a
slight edge enhancement, associated with the Laplacian term
in Eq. (26), at boundaries between tissue regions. Also no-
table is the nearly complete absence of any artifacts outside
the scatterer in each case; this result indicates that high con-
trast resolution has been achieved. However, in each case,
the imaginary part of the reconstruction is nonzero, indicat-
ing that the Born approximation is not fully applicable. The
imaginary parts of each reconstruction are, however, small
compared to the real parts. Thus, simple aberration correc-
tion methods [of which one example is given by Eq. (24)]
could substantially reduce this phase error, as for multiple-
frequency diffraction tomography in Ref. 19.
Three-dimensional reconstructions of a homogeneous
slab are shown in Fig. 7. The scatterer is characterized by Eq.
(31) with y,=0.01, a,=0.5 mm, a,=1.0 mm, and a,=1.5
mm. Synthetic data was computed using Eq. (34) for 288
incident-wave directions and 1152 measurement directions,
each evenly spaced in the angles ® and ©. Signal param-
eters were as for the examples above, except that the initial
sampling rate for the time-domain signals was 9.0 MHz. Iso-
surface renderings of the real part of y,, are shown for the
surfaces 7y,,=0.0025. Since the scattering data were ob-
tained using a Born approximation for the 3D case, the
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FIG. 7. Three-dimensional reconstructions of a uniform slab with contrast
y=0.01. Each reconstruction shows an isosurface rendering of the surface
v4=0.0025. Left: single-frequency reconstruction. Right: time-domain re-
construction.

imaginary part of each reconstruction is identically zero for
both reconstructions. Consistent with the point-spread func-
tions shown in Fig. 2, the time-domain reconstruction is
much more accurate than the single-frequency reconstruc-
tion. While the single-frequency reconstruction shows an er-
roneously rippled surface, the time-domain reconstruction is
smooth. The time-domain reconstruction is nearly identical
to the original object except for some rounding of the sharp
edges due to the limited high-frequency content of the signal
employed. The length scale of the rounded edges is on the
order of one-half the wavelength of the highest frequency in
the pulse, i.e., about 0.2 mm for the —6-dB cutoff of 3.25
MHz.

Since three-dimensional inverse scattering is a computa-
tionally demanding, problem, comparison of computational
efficiency for single-frequency and time-domain methods is
of interest. For both reconstructions shown in Fig. 7, identi-
cal discretizations of the reconstructed medium were em-
ployed. Both computations included solution of the appli-
cable linearized forward problem as well as the inverse
problem. Nonetheless, the time-domain method was more
efficient than the single-frequency method; the total CPU
time required on a 200-MHz AMD K6 processor was 1333
CPU min for the time-domain method and 287.4 CPU min
for the single-frequency method. This gain in efficiency was
possible because the greatest computational expense oc-
curred in the ‘‘backpropagation’ of the signals for each re-
construction point. For the single-frequency method, this
step required evaluation of complex exponentials for each
incident-wave direction, measurement direction, and spatial
point. For the time-domain method, however, the computa-
tionally intensive steps (including the forward problem solu-
tion and Fourier interpolation of the scattered signals)
needed only to be performed once for each transmit/receive
pair. For the backpropagation step, performed at each point
in the 3D spatial grid, the time-domain reconstruction
method required only linear interpolation of the oversampled
farfield pressure waveforms.

IV. CONCLUSIONS

A new method for time-domain ultrasound diffraction
tomography has been presented. The method provides quan-
titative images of sound speed variations in unknown media;
when two pulse center frequencies are employed, the method
is also capable of imaging density variations. Reconstruc-
tions performed using this method are equivalent to multiple-
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frequency reconstructions using filtered backpropagation, but
can be obtained with much greater efficiency.

The time-domain reconstruction algorithm has been de-
rived as a simple filtered delay-and-sum operation applied to
far-field scattered signals. This algorithm is closely related to
time-domain confocal synthetic aperture imaging, so that it
can be considered a generalization of imaging algorithms
employed in current clinical instruments. The simplicity of
the imaging algorithm allows straightforward addition of fea-
tures such as time-gain compensation and aberration correc-
tion.

Numerical results obtained using synthetic data for 2D
and 3D scattering objects show that the time-domain method
can yield significantly higher image quality (and, in some
cases, also greater efficiency) than single-frequency diffrac-
tion tomography. Quantitative reconstructions, obtained us-
ing signal parameters comparable to those for present-day
clinical instruments, show accurate imaging of objects with
simple deterministic structure, random internal structure, and
structure based on a cross-sectional tissue model. The
method is hoped to be useful for diagnostic imaging prob-
lems such as the detection and characterization of lesions in
ultrasonic mammography.
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Abstract— A quantitative ultrasonic imaging method employing
time-domain scattering data is presented. This method provides to-
mographic images of medium properties such as the sound speed
contrast; these images are equivalent to multiple-frequency filtered-
backpropagation reconstructions using all frequencies within the
bandwidth of the incident pulse employed. However, image synthesis is
performed directly in the time domain using coherent combination of
farfield scattered pressure waveforms, delayed and summed to numeri-
cally focus on the unknown medium. The time-domain method is more
efficient than multiple-frequency diffraction tomography methods, and
can, in some cases, be more efficient than single-frequency diffrac-
tion tomography. Example reconstructions, obtained using synthetic
data for two-dimensional and three-dimensional scattering of wide-
band pulses as well as measured scattering data from a 2048-element
ring transducer, show that the time-domain reconstruction method
provides image quality superior to single-frequency reconstructions for
objects of size and contrast relevant to medical imaging problems such
as ultrasonic mammography. The present method is closely related to
existing synthetic-aperture imaging methods such as those employed
in clinical ultrasound scanners. Thus, the new method can be extended
to incorporate available image-enhancement techniques such as time-
gain compensation to correct for medium absorption and aberration
correction methods to reduce error associated with weak scattering ap-
proximations.

I. INTRODUCTION

Quantitative imaging of tissue properties is a potentially
useful technique for diagnosis of cancer and other disease.
Inverse scattering methods such as diffraction tomography
can provide quantitative reconstruction of tissue properties
including sound speed, density, and absorption. However,
although previous inverse scattering methods have achieved
high resolution and quantitative accuracy, such methods
have not yet been incorporated into commercially successful
medical ultrasound imaging systems. Previous methods of
diffraction tomography have usually been based on single-
frequency scattering, while current diagnostic ultrasound
scanners employ wideband time-domain signals. The use
of wideband information in image reconstruction is known
to provide increased point and contrast resolution, both of
which are important for medical diagnosis.

Relatively few previous workers have investigated direct
use of wideband scattering data for inverse scattering meth-
ods analogous to single-frequency diffraction tomography.
A review of several approaches is given in Ref. [1], includ-
ing linear and nonlinear diffraction tomography methods us-
ing scattering data for a number of discrete frequencies [2]-
[4], a direct (but not completely general) time-domain re-
construction algorithm [5], and an extension of the eigen-
function method from Ref. [4] to use the full bandwidth of
the incident pulse waveform [6].

Recently, a new approach to wideband quantitative imag-
ing has been offered: a time-domain inverse scattering
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method that overcomes some of the limitations of previ-
ous frequency-domain and time-domain quantitative imag-
ing methods [1]. In this paper, the new time-domain diffrac-
tion tomography algorithm is briefly reviewed. The capabil-
ities of the method are demonstrated using simulated recon-
structions of two-dimensional and three-dimensional scat-
terers. The practical capability of the method for ultra-
sonic mammography is then illustrated by reconstructions of
tissue-mimicking phantoms from scattering data measured
by a 2.5 MHz, 2048-clement ring transducer.

II. THEORY

A new time-domain inverse scattering algorithm, appli-
cable to quantitative imaging of tissue and other inhomoge-
neous media, is derived in Ref. [1] and summarized briefly
below. The medium is modeled as a fluid medium defined
by the sound speed contrast function (r) = ¢3/c(r)?* — 1,
where co is a background sound speed and c¢(r) is the
spatially-dependent sound speed defined at all points r. For
the scope of the present paper, the medium is assumed to
have constant density, no absorption, and weak scattering
characteristics; extensions to the reconstruction algorithm
that overcome these limiting assumptions are discussed in
Ref. [1].

The medium is subjected to a pulsatile plane wave of the
form pinc(r, @, t) = f%t — 1 - a/cy), where o is a unit
vector in the direction of propagation, f is the time-domain
waveform, and cg is the background sound speed. The scat-
tered wavefield py (0, o, t) is measured at a fixed radius R in
the farfield, where @ corresponds to the direction unit vector
of a receiving transducer element. (Alternatively, if scat-
tering measurements are made in the nearfield, the farfield
acoustic pressure can be computed using exact transforms
that represent propagation through a homogeneous medium
[2]) The farfield scattered pressure, when specified for all
incident-wave directions a, measurement directions 8, and
times ¢, comprises the data set to be used for reconstruction
of the unknown medium. The inverse scattering problem is
to reconstruct the unknown medium contrast (r) using the
scattered field p, (0, o, w) measured at a fixed radius R.

The starting point for the present time-domain inverse
scattering method is single-frequency filtered backpropaga-
tion [2], [7], [8]. Under the assumption of weak scattering,
such that the Born approximation holds, the solution to the
single-frequency inverse scattering problem is given by the
formula

olw —ikR
5 () % [[ 206,00

x ekO-ar dS, dSs, where 1
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plw) = Sin® ®(0,a) = |sin(f — a)| in 2D, and

- kR .
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Each surface integral in Eq. (1) is performed over the en-
tire measurement circle for the 2D case and over the entire
measurement sphere for the 3D case. Equation (1) provides
an exact solution to the linearized inverse scattering prob-
lem for a single frequency component of the scattered wave-
field p;(0, c, t). The resulting reconstruction, yg(r,w), has
spatial frequency content limited by the “Ewald sphere” of
radius 2k in wavespace [9].

To improve upon the single-frequency formulas specified
by Eq. (1), one can extend the spatial-frequency content of
reconstructions by exploiting wideband scattering informa-
tion. The method outlined here synthesizes a “multiple-
frequency” reconstruction yps(r) by formally integrating
single-frequency reconstructions yp(r,w) over a range of
frequencies w. A general formula for this approach is

Jo §(w) 8 (r,w) dw
Jo §(w)dw,

where §(w) is an appropriate frequency-dependent weight-
ing function. In practice, the weighting function §(w) is cho-
sen to be bandlimited because (for a given set of physical
scattering measurements) the frequency-dependent contrast
~g(r,w) can only be reliably reconstructed for a finite range
of frequencies w associated with the spectra of the incident
waves employed. Thus, the integrands in Eq. (3) are nonzero
only over the support of §(w) and the corresponding inte-
grals are finite.

If the frequency weighting function is now specified
to incorporate the incident-pulse spectrum as well as the
frequency- and dimension-dependent coefficient fi(w), such

that g(w) = f(w)/#(w), Bq. (3) reduces to the form [1]

Ym(r) = 3)

() = %/ (0, ) (ps (6, ,7)
+iH! [ps(B,a, 7')]) dS, dSy, where @
(x—86)-r

T:R/Co+
Co

o0
, N:2/ §(w) dw,
0
and H~! is the inverse Hilbert transform, also known as a
quadrature filter.

Equation (4) is notable in several respects. First, it pro-
vides a linearized reconstruction that employs scattering in-
formation from the entire signal bandwidth without any fre-
quency decomposition of the scattered wavefield. Second,
the delay term 7 corresponds exactly to the delay required
to construct a focus at the point r by delaying and sum-
ming the scattered wavefield p,(0, o, t) for all measure-
ment directions @ and incident-wave directions c. Thus, the
time-domain reconstruction formula given by Eq. (4) can be
regarded as a quantitative generalization of confocal time-
domain synthetic aperture imaging (e.g., the “gold standard”
beamformer of Ref. [10]), in which signals are synthetically
delayed and summed for each transmit/receive pair to focus
at the image point of interest.
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Fig. 1. Point-spread function for three-dimensional time-domain and
single-frequency diffraction tomography methods. The vertical scale cor-
responds to the relative amplitude of the reconstructed contrast (r), while
the horizontal scale corresponds to number of wavelengths at the center
frequency.

II1. .SIMULATIONS

Below, the time-domain diffraction tomography method
of Ref. [1] is illustrated using results of simulation tests
with 2D and 3D synthetic data. The synthetic scattering
data employed were obtained using a Born approximation
method for point scatterers and 3D slabs, and a k-space
method [11] for arbitrary 2D inhomogeneous media. Ad-
ditional results, presented in Ref. [1], show reconstructions
performed using using exact time-domain solutions for scat-
tering from compressible cylinders as well as reconstruc-
tions from limited-aperture data. The time-domain wave-
form employed for all the simulations reported here was

f(t) = cos(2mfot) et /(27" with f; = 2.5 MHz and
o = 0.25 ps, so that the —6 dB bandwidth of the signal
was 1.5 MHz. These parameters correspond closely to those
of the ring transducer used in the measurements reported in
the next section.

The time-domain imaging method was directly imple-
mented using Eq. (4), evaluated using straightforward nu-
merical integration over all incident-wave and measurement
directions employed. The synthetic data employed was sam-
pled at rates slightly larger than the Nyquist frequency. Be-
fore evaluation of the argument 7 for each signal, the time-
domain waveforms were Fourier interpolated at a sampling
rate of 16 times the original rate. This resampling, as well as
the inverse Hilbert transform from Eq. (4), were performed
by FFT. Values of the pressure signals at the time 7 were
then determined using linear interpolation between samples
of the resampled waveforms.

A three-dimensional point-spread function (PSF) for the
present time-domain diffraction tomography method is il-
lustrated in Fig. 1. The PSF was determined by recon-
structing an ideal point scatterer located at the origin. The
time-domain reconstruction shows a dramatic improvement
over the single-frequency reconstruction, with significant
increases in both the point resolution (PSF width at half-
maximum reduced by 27%) and contrast resolution (first
sidelobe reduced by 13 dB and second sidelobe reduced by
18 dB).

Reconstructions for several arbitrary scattering objects are
shown in Fig. 2. All ofthese reconstructions were performed
using synthetic data produced by the k-space method de-
scribed in Ref. [11]. Synthetic scattering data were com-
puted for 64 incident-wave directions and 256 measure-
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Fig. 2. Time-domain reconstructions from full-wave synthetic data for
three arbitrary scattering objects. The upper row shows the contrast func-
tion 7 for each object, while the lower row shows the real part of the
reconstructed contrast yas. Each panel shows a reconstruction area of
5 mm X 5 mm using a linear bipolar gray scale. Left to right: (a) Cylinder,
radius 2.5 mm, with an internal cylinder of radius 0.2 mm. (b) Cylinder,
radius 2.5 mm, with random internal structure. (c) Tissue structure, with
variable sound speed and density, from a chest wall cross section.

ment directions in each case. The first panel shows a re-
construction of a cylinder of radius 2.5 mm and contrast
~ = —0.0295 with an internal cylinder of radius 0.2 mm
and contrast v = 0.0632. These contrast values correspond,
based on tissue parameters given in Ref. [12], to the sound-
speed contrasts of human skeletal muscle for the outer cylin-
der and of human fat for the inner cylinder. The second panel
shows a reconstruction of a 2.5 mm-radius cylinder with ran-
dom internal structure. The third reconstruction shown em-
ployed a portion of a chest wall tissue map from Ref. [13].
In this case, the synthetic data was obtained using a tissue
model that incorporates both sound speed and density vari-
ations, so that the actual reconstructed quantity is slightly
different from s [1]. In Fig. 2(c), black denotes connec-
tive tissue, dark gray denotes muscle, and light gray denotes
fat.

The real part of each reconstruction in Fig. 2 shows good
image quality, with high resolution and very little evidence
of artifacts. Particularly notable is the accurately detailed
imaging of internal structure for the random cylinder and the
chest wall cross section. As discussed in Ref. [1], the den-
sity variations present in the chest wall cross section have
not greatly affected the image appearance; there is, however,
a slight edge enhancement at boundaries between tissue re-
gions. Also notable is the nearly-complete absence of any
artifacts outside the scatterer in each case; this result indi-
cates that high contrast resolution has been achieved.

Three-dimensional reconstructions of a homogeneous
slab with sound speed contrast ¥ = 0.01 and dimensions
1 mm x 2 mm X 3 mm, are shown in Fig. 3. Synthetic data
was computed using a weak scattering approximation for
288 incident-wave directions and 1152 measurement direc-
tions, each evenly spaced in the angles @ and ©. Isosurface
renderings of the real part of the reconstructed yas are shown
for the surfaces yas = 0.0025. Consistent with the point-
spread function shown in Fig. 1, the time-domain recon-
struction is much more accurate than the single-frequency
reconstruction. While the single-frequency reconstruction
shows an erroneously rippled surface, the time-domain re-
construction is smooth. The time-domain reconstruction is
nearly identical to the original object except for some round-
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Fig. 3. Three-dimensional reconstructions of a uniform slab with contrast
~ = 0.01. Each reconstruction shows an isosurface rendering of the surface
vam = 0.0025. Left: single-frequency reconstruction. Right: time-domain
reconstruction.

Fig. 4. Reconstructions of three phantoms from measured scattering data.
Each panel shows an area of 9 mm x 9 mm using a bipolar logarithmic
scale with a 30 dB dynamic range. Left to right: (a) Homogeneous agar
cylinder. (b) Agar with glass spheres. (c) Agar with glass spheres and three
nylon filaments.

ing of the sharp edges due to the limited high-frequency con-
tent of the signal employed. The length scale of the rounded
edges is on the order of one-half the wavelength of the high-
est frequency in the pulse, i.e., about 0.2 mm for the —6 dB
cutoff of 3.25 MHz. Notable is that the time-domain method
was more efficient than the single-frequency method in this
case; the total CPU time required on a 233 MHz Pentium II
processor was 100.0 CPU min for the time-domain method
and 233.4 CPU min for the single-frequency method (both
computations included solution of the applicable linearized
forward problem as well as the inverse problem). This gain
in efficiency was possible because the greatest computa-
tional expense occurred in the “backpropagation” of the sig-
nals, which required evaluation of complex exponentials for
the single-frequency method, but only linear interpolation of
the oversampled farfield pressure waveforms for the time-
domain method.

IV. MEASUREMENTS

The practical capability of the time-domain diffraction to-
mography method to image tissue-like media has been tested
using measured scattering data for three tissue-mimicking
phantoms, each of diameter 6 mm. Details of the phan-
tom construction and measurement procedure are given in
Ref. [6] and briefly summarized here. The phantoms are pri-
marily composed of agar (nominal sound speed 1510 m/s);
one is homogeneous, another contains tiny (subresolution),
randomly distributed glass beads, and a third contains three
nylon filaments as well as glass beads. Measurements were
made using a ring transducer system [14] that consists of
2048 elements, each of which can be used independently
as a transmitter or receiver. This fixed transducer config-
uration avoids signal degradation from phase jitter and ex-
cessive scanning time associated with moving transducers.
The control electronics associated with the ring transducer
provide the capability to program arbitrary transmit wave-
forms. The element pitch is 0.23 mm, less than one half of
the wavelength at the nominal center frequency of 2.5 MHz.

Spatially-limited plane wave pulses were transmitted
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from 128 positions equally spaced around the ring. To con-
struct the spatially-limited plane waves, a 4 mm-width co-
sine rolloff was added to each side of a 10 mm-width uni-
form central region to provide a smooth transition in ampli-
tude and reduce wavefront spreading. A backpropagation
method [15] was then used to obtain the transmit waveforms
that produced the desired incident wave.

The incident field (without the scattering object) and the
total field (with the scattering object) were measured around
the ring for each incident view. To compensate for sound
speed changes due to water temperature variations, the back-
ground sound speed was tracked using a probe beam during
the measurement of both the incident and total fields. The
sound speed in the background was estimated from knowl-
edge of the arrival time and the travel distance of the probe
beam, which was a spatially limited plane wave directed
to the side of the phantom. The resulting speed estimate
was used to equalize the time scale of all waveforms. A
temperature-compensated incident field p; (6, «, t) was sub-
tracted from the total field p(8, ct, t) to obtain the scattered
field p,s(e, 6,t). Finally, wavefields were extrapolated to
128 measurement positions at a radius of 7500 mm by an
exact spatio-temporal transformation [2], [6].

Far-field scattered waveforms for each incident-wave di-
rection were further processed by a deconvolution opera-
tion [1] that compensated for transducer-dependent varia-
tions in the incident pulse. The result for each incident-
wave direction was an estimate of the scattered farfield pres-
sure associated with an ideal incident pulse of the form
f(t) = cos(2rfot)e=t"/(27") with f, = 2.25 MHz and
o = 0.25 ps. The preprocessed data p,(8, ¢, t) were then
inverted using numerical integration of Eq. (4). The inver-
sion procedure was the same as for the simulations described
above, except that the initial sampling rate was 20 MHz and
that signals were oversampled to 80 MHz by Fourier inter-
polation.

Reconstructions for the three phantoms are shown in
Fig. 4. Each panel shows good reconstruction quality with
a uniform background and high point and contrast resolu-
tion as well as quantitative accuracy (similar reconstruc-
tions, obtained using an eigenfunction-based inverse scat-
tering method, are presented in Ref. [6]). The subresolution
glass spheres do not cause speckle as in pulse-echo B-scan
imaging, but instead appear as slight local variations in con-
trast consistent with weak point scatterers. Both nylon fila-
ments and glass spheres appear dark because higher sound
speed corresponds to negative contrast y as defined above.
In panel (c), reconstructions of the nylon wires show slight
sidelobe artifacts; these artifacts could be removed by care-
ful choice of an optimal pulse f(¢) in the preprocessing of
the scattered field [6].

V. CONCLUSIONS

A new method for time-domain ultrasound diffraction to-
mography has been presented and validated using synthetic
and measured scattering data. The method provides quanti-
tative images of sound speed variations in unknown media.
These reconstructions are equivalent to multiple-frequency
reconstructions using filtered backpropagation, but can be
obtained with much greater efficiency. The time-domain re-
construction algorithm has been derived as a simple filtered
delay-and-sum operation, closely related to time-domain
confocal synthetic aperture imaging, so that it can be con-
sidered a generalization of imaging algorithms employed in
current clinical instruments. The simplicity of the imaging
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algorithm allows straightforward addition of features such
as time-gain compensation and aberration correction.
Numerical results obtained using synthetic and measured
data show that the time-domain method can yield signifi-
cantly higher image quality (and, in some cases, also greater
efficiency) than single-frequency diffraction tomography.
Quantitative reconstructions, obtained using signal param-
eters comparable to those for present-day clinical instru-
ments, show accurate imaging of objects with simple deter-
ministic structure, random internal structure, and structure
based on a cross-sectional tissue model. Reconstructions of
tissue-mimicking phantoms suggest that the method will be -
useful for diagnostic imaging problems such as the detection
and characterization of lesions in ultrasonic mammography.
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Abstract

Extensions of a time-domain diffraction tomography method, which recon-
structs spatially-dependent sound speed variations from far-field time-domain
acoustic scattering measurements, are presented and analyzed. The result-
ing reconstructions are quantitative images with applications including ultra-
sonic mammography, and can also be considered candidate solutions to the
time-domain inverse scattering problem. Here, the linearized time-domain
inverse scattering problem is shown to have no general solution for finite
signal bandwidth. However, an approximate solution to the linearized prob-
lem is constructed using a simple delay-and-sum method analogous to “gold
standard” ultrasonic beamforming. The form of this solution suggests that
the full nonlinear inverse scattering problem can be approximated by apply-
ing appropriate angle- and space-dependent time shifts to the time-domain
scattering data; this analogy leads to a general approach to aberration cor-
rection. Two related methods for aberration correction are presented: one in
which delays are computed from estimates of the medium using an efficient
straight-ray approximation, and one in which delays are applied directly to
a time-dependent linearized reconstruction. Numerical results indicate that
these correction methods achieve substantial quality improvments for imaging
of large scatterers. The parametric range of applicability for the time-domain
diffraction tomography method is increased by about a factor of two by aber-

ration correction.
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I. INTRODUCTION

This paper concerns time-domain diffraction tomography methods for solution of the
time-domain inverse scattering problem, in which an unknown inhomogeneous medium is
determined from its far-field acoustic scattering. This problem is of interest for medical
ultrasonic imaging, since inverse scattering methods such as diffraction tomography can
provide quantitative reconstruction of tissue properties including sound speed, density, and
absorption.

Most practical inverse scattering methods to date have been based on linearization of
the inverse problem using the Born or Rytov approximation.b? These are weak scattering
approximations, in which the variation of medium properties is assumed to be a small pertur-
bation from a uniform background. Nonlinear inverse scattering methods,>* which consider
contributions of strong and multiple scattering, are much more complex and computationally
intensive. However, since large-scale tissue structures cannot be considered weak scatterers
at diagnostic ultrasound imaging frequencies,>® linearized inverse scattering methods are of
limited use for medical ultrasonic imaging.

A similar problem arises in conventional B-scan and synthetic-aperture imaging,®° which
form the basis for current diagnostic ultrasound scanners. Current scanners form synthetic
images based on the assumption of a uniform background sound speed, which is essen-
tially the Born approximation. The invalidity of this assumption is associated with im-
age artifacts and focus aberration.’” Considerable effort has been devoted to methods for
aberration-corrected imaging, which is analogous to nonlinear inverse scattering. Approaches
to aberration correction for pulse-echo imaging have been designed to correct distortion as-
sociated with several simplified propagation models, including refraction by homogeneous
layers,'%11 phase aberration close to the transducer aperture,'? ** and aberration caused by
a hypothetical phase screen away from the aperture.’® 7 All of these aberration correction
methods require indirect estimation of the medium-induced distortion based on the received

scattering data.




A time-domain diffraction tomography method has been introduced recently.'®'¥ This
method provides tomographic reconstructions of unknown scattering media from scattering
data measured on a surface surrounding the region of interest, using the entire available
bandwidth of the signals employed. The reconstruction algorithm is derived as a simple
delay-and-sum formula similar to synthetic-aperture algorithms employed in conventional
clinical scanners.®® However, unlike current clinical scanners, the present method provides
quantitative images of the spatially-dependent tissue sound speed. These quantitative sound
speed maps offer considerable potential for aberration correction, since the medium-induced
distortion can be estimated directly from the image data.

The image reconstruction algorithm of Ref. 18 was derived from the frequency-domain
exact solution to the linearized inverse scattering problem, i.e., diffraction tomography em-
ploying the Born approximation. Inverse scattering approaches based on the Born approxi-
mation form adequate images only for relatively small, weakly scattering objects,®?% so that
this approximation has limited utility for large-scale imaging problems such as ultrasonic
mammography. In the present paper, an aberration correction approach, which significantly
extends the range of validity of the time-domain diffraction tomography method, is intro-
duced. The reconstruction method of Ref. 18 is shown to result in an approximate solution
to the time-domain linearized inverse scattering problem; application of aberration correc-
tion results in reconstructions that better approximate the solution to the full nonlinear
time-domain inverse problem.

Two related methods for aberration correction are presented here. The first, suggested
by the synthetic-aperture nature of the reconstruction algorithm, employs a focus correction
approach in which delays are computed from estimates of the medium using an efficient
straight-ray approximation. The second approach is suggested by examination of the re-
construction itself in the time domain, as in Ref. 21. In this approach, delays are applied
directly to a time-dependent linearized reconstruction. Numerical results show that both
methods increase the parameter range for which valid images can be obtained and illustrate

differences in performance between the two.




II. THEORY

The imaging problem considered here concerns reconstruction of an unknown medium
from far-field, time-domain scattering measurements. Solutions of this inverse problem are
quantitative images of scattering media such as biological tissue. Below, the linearized
inverse scattering problem (e.g., quantitative ultrasonic imaging without aberration correc-
tion) is considered and shown to have no general solution. However, approximate solutions to
the nonlinear inverse problem result in useful aberration correction methods for quantitative

imaging.

A. The linearized time-domain inverse scattering problem

The time-domain inverse scattering problem analyzed below is defined as follows. A
quiescent, inhomogeneous, fluid medium is subjected to an incident plane wave pulse prop-

agating in the direction c,
pi(ra t) = U(t —r: C!/Cg), (1>
where ¢ is a reference or “background” sound speed. The medium is assumed to have

spatially-varying sound speed, constant density, and no absorption, and to be completely

characterized by a contrast function y(r), defined as

1) = o b ©)
where ¢(r) is the local sound speed at position r. The inverse scattering problem is the
determination of the medium contrast v(r) from time-domain measurements of the scattered
field ps(@, a, t) for all measurement directions @, incident-wave directions ¢, and times £.
The implicit neglect of density variations is not severely limiting, since the contrast given
by Eq. (2) dominates reconstructed images even in the presence of density variations.!8
A general time-domain solution for the scattered acoustic pressure at a far-field mea-

surement radius R, valid for two-dimensional (2D) or three-dimensional (3D) scattering, is

then




oo

p(0,0,0) =F (3,0, N = [ pu(0,x f)e " df, 3)

where p,(8, @, f) is a single frequency component of the scattered wavefield, given in the far

field by

ps(6,a, f) = Fps(0, ;1)) = /oo ps(0, a,t) €71 dt

= BT(R, ) [e70 9(r0) pulr, 0 0) dVo (4)

In Eq. (4), k is the wavenumber w/cy and pu(ro, @, w) is the total frequency-domain acoustic
pressure associated with an incident plane wave 4(f) etkro [7 e., one frequency component
of the plane wave pulse u(t — c - r/cg)]. The integral in Eq. (4) is taken over the entire
support of v in R? for 2D scattering or in R3 for 3D scattering. The terms I'(R, f), which

are associated with the far-field forms of the free-space Green’s functions for the Helmholtz

equation,?? are

?
87kR
1
I'(R,f) = e for 3D scattering. (5)

(R, f) =— for 2D scattering and

The time-domain inverse scattering problem is given by the Fourier inverse of Eq. (4):

po(6, cu, ) = /VL[ . (r, at— 24 Q—r)} ~(r) dV, (6)

Co Co
where py(r,a,t) is the total time-domain acoustic pressure associated with the incident

plane wave u(t — r - @¢/cg) and the linear operator L is defined as

1 .
Lip(r,t)] = ?F_l[ 87:ICR F[p‘(r,t)” for 2D scattering and
0
1
Lip(r,t)] = —mﬁ(r, a,t) for 3D scattering. (7)
0

Eq. (6) defines a nonlinear inverse problem for the contrast ~(r); the nonlinearity is associ-
ated with the dependence of p(r, o, ) on ¥(r).

The nonlinear time-domain inverse scattering problem defined by Eq. (6) can be lin-
earized by invoking the Born approximation, in which the total acoustic pressure is approx-

imated by the incident wave. The resulting linearized equation is

5




ps(0, o, t) = /‘/L[u(t - T(B,a,r))] v (r) dV, (8)

where the true potential (r) has been replaced by v.(r), a hypothetical solution to the

linearized inverse problem, and the propagation delay term 7(0, o, 1) is defined
7(0,0,1) = — — ———. 9)

The delay specified by Eq. (9) is precisely that required to refocus scattered waves through
a homogeneous (¢ = ¢y) medium onto each image point.

In the asymptotic weak scattering limit, the linearized inverse scattering problem (8) is
equivalent to the original nonlinear problem (6), so that an exact solution for any waveform
u(t) is given by v (r) = 7(r) as y(r) — 0. However, unlike the frequency-domain linearized
inverse scattering problem, the inverse problem of Eq. (8) has no general solution for nonzero
v(r). To prove this, one may examine the Fourier transform of Eq. (8), which is simply the

linearization of Eq. (4):

5:(0, @, f) = (R, f) i(f) / e~ H(O-0)T (1) GV, (10)

where k is the wavenumber 27 f/co. Thus, any general time-independent solution of Eq. (8)
must also be a frequency-independent solution to the linearized frequency-domain inverse
scattering problem (10).

For @ = a (the forward scattering case), Eq. (10) leads to the condition

50,6, f)e
k2 a(f)

for existence of a general solution to Eq. (8). This requirement is easily seen by coun-

—ikR 1
=T R /7L(r) dV = constant (Vf) (11)

terexample to be impossible. For example, Eq. (11) requires that, for all frequencies f, the
magnitude of the forward scattered pressure should (for a unit-amplitude incident wave) be
proportional to f2. A counterexample is given by any high-contrast scatterer (e.g., 7~ 1),
for which this f2? dependence occurs only at very low frequencies, such that the scatterer’s
dimensions are much smaller than the wavelength co/ f.2® Thus, although the nonlinear time-

domain inverse scattering problem has an exact solution (equal to the true contrast 7(r)),
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the corresponding linearized problem has no general solution for nonzero signal bandwidth

except in the limiting case v — 0.

B. Approximate linearized solutions by Fourier synthesis

Although no solution vz(r) to the quantitative imaging problem of Eq. (8) exists in
general, one can still obtain approximate solutions by applying Fourier synthesis to the well-
known exact solution of the frequency-domain linearized inverse scattering problem. For
any frequency component of ps(0, a,t), the frequency-domain linearized inverse problem

(10) has an exact, frequency-dependent solution given by the frequency-domain filtered

backpropagation formula®?!
() e ™R X ik(0—c)r
vale, £) = BE G [ #(0,0)50(6,0, ) MO dS dS, (12)
where
i) = | 2E  9(6,0) = | sin(6 - 0)| in 2D, and
af) =1 g3 , o) = |si )| i , 2
a(f) = "2 5(6,0) = 6 - o in 3D. (13)
473

Each surface integral in Eq. (12) is performed over the entire measurement circle for the 2D
case and over the entire measurement sphere for the 3D case.

Fourier inversion of Eq. (10) into the time domain can be performed using the convolution
theorem.?® The result, with the hypothetical linearized solution vz (r) replaced by the Born

reconstruction 45(r, f), is
1 ..
ps(07a>t) = —47(;%7{' /u(t—T(B,a,r)) ®’YB(rat) dva (14)

where vp(r,t) is the inverse Fourier transform of the frequency-domain solution 4g(r, f).
The time-domain reconstruction vz(r,t) is an exact solution of the integral equation (14),
which is similar but not equivalent to the linearized time-domain inverse scattering problem
of Eq. (8). Because 45(r, f) is conjugate symmetric, the time-domain potential yg(r,?) is

purely real.?!




Comparison of Egs. (8) and (14) shows that, in the weak scattering limit,

vg(r,t) = y(r) 6(t) + ¥(r, 1), (15)

where v(r, 1) is a “nonradiating source”®® that satisfies the constraint
/Vii(t - 7(0, r)) ® Y(r,t)dV = 0. (16)

The presence of the nonradiating source term t(r,t) is consistent with the nonuniqueness
of solutions to Eq. (14).%7 For example, additional solutions to Eq. (14) include the class of
functions y5(r, t) + ¢(r), where ¢(r) is the inverse Fourier transform of any function ®(k)
that is zero inside the Ewald sphere,! defined for the upper frequency limit of the incident
pulse as k < 47 f,/co, where fj, is the upper limit of the pulse frequency content.

A straightforward approach to estimate yg (r,t) (and thus (r)) is to perform inverse
Fourier transformation on the frequency-domain Born inversion 48(r, f). A natural estimate
of the medium contrast is a reconstruction employing information from multiple frequencies

contained in the incident pulse, e.g.,

(r8) = [t o) e | [ o) df (17
= 75(r,t) @ v(t) /v (0) (18)
~ (r) v(t) [0 (0), (19)

where the final expression results from Eq. (15). The frequency weight 0(f) must be inte-
grable and have no support outside the support of 4(f), but is otherwise arbitrary. The time
dependence of the reconstructed contrast can be removed from Eq. (19) by setting ¢ = 0
(called the “imaging condition” in Ref. 28).

If the incident waveform is sinusoidal, so that, for instance, a(f) = 0(f — fo) +9 (f+ fo),
the reconstructed potential v, (r, 0) is equal to the real part of the frequency-domain solution
Ap(r, fo). Thus, 7,(r,0) is an exact solution of the linearized inverse problem in the single-
frequency limit. However, as proven above, no time-independent reconstruction can solve
the general linearized time-domain inverse scattering problem, so that 7,(r,0) is only an

approzimate solution for any nonzero-bandwidth incident waveform u(t).

8




The Fourier inversion of Eq. (17) can be performed either numerically or analytically.
Numerical inversion, using frequency-domain reconstructions at a number of discrete fre-
quencies within the bandwidth of the incident pulse, was the approach employed by Lin,
Nachman, and Waag.?! (However, the frequency-domain inversions of Ref. 21 were per-
formed using eigenfunctions of the far-field scattering operator?® instead of filtered back-
propagation.) Alternatively, particular choices of the weight 9(f) allow analytic inversion
of the frequency-domain reconstruction yg(r, f) into the time domain, resulting in a simple

delay-and-sum formula. For the weight 9(f) = a(f)/A(f), the resulting formula is
o(r,t) = Re = [[ ®(8,0) (p.(6,0,7) +iH [p,(6, 0t +7)]) dSadSs), (20)
T N
where
* a(f)
N=2[ ZLlg, 91
/o an ey

T is given by Eq. (9), and H™! is the inverse Hilbert transform operator (quadrature filter).

The reconstruction formula of Eq. (20) is identical to that derived in Ref. 18 and similar
to that derived in Ref. 30. In view of the present derivation, these previous methods are
understood to provide approximate solutions to the linearized time-domain inverse scattering

problem (8).

C. Aberration-corrected solutions

The form of the approximate linearized solution derived above suggests possible ap-
proaches to improvement of images beyond the limits of the Born approximation.

First, one may observe that the reconstruction formula of Eq. (20) synthetically focuses
the time-domain scattered field back onto each point in the medium.'® This observation leads
to the idea of aberration correction by iterative refinement of the focus quality. Since the
reconstruction provides an estimate of the medium itself, this refinement is fairly straightfor-

ward. One simple implementation employs an assumption that background inhomogeneities




result only in cumulative delays (or advances) of the incident and scattered wavefronts, so

that the total delay for an angle ¢ and a point position r is given by

() = [[o(€) dE - e (22)

Co
where the integral is performed along the line that joins the spatial points r and R¢,
Aberration-corrected reconstructions can then be performed using Eq. (20) with 7 replaced
by the corrected delay term
T — R/cy+ (a——c_OO)-_r +é7(a,T) + 67(0,1) (23)
and by then computing 7,(r, 0) using Eq. (20).

An alternative approach to aberration correction is motivated by the observation, made
in Ref. 21, that temporal delays from wave propagation in the inhomogeneous medium
result in corresponding delays to the time-domain reconstruction of Eq. (17). That is,
the reconstructed waveforms -, (r,t) may be delayed or advanced relative to the waveform
v(t). In Ref. 21, correction for this temporal aberration was implemented by adaptive
demodulation of ~,(r,t) from the weighting waveform v(t). Here, envelope detection is
applied to 7,(r, t) and the time of maximum envelope amplitude ¢,y is found for each point

r, resulting in the aberration-corrected reconstruction

y(r) = 1 (rv tmaX(r))' (24)

Envelope detection can also be applied to iterative reconstructions obtained using the focus

correction given by Eq. (22).
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III. COMPUTATIONAL METHODS

The present aberration correction methods have been tested using simulated scattering
data for a number of two-dimensional test objects. The computational configuration was
chosen to mimic the characteristics of an available 2048-element ring transducer.?’ The

time-domain waveform employed for all the computations reported here was
u(t) = cos(wet) e/, (25)

where wy = 2 fo for a center frequency of fo, taken here to be 2.5 MHz, and o is the
temporal Gaussian parameter. The value of o chosen here was 0.25, which corresponds to a
—6 dB bandwidth of 1.5 MHz.

For 2D cylindrical inhomogeneities, the frequency-domain scattered field ps(0, a,w) was
computed using an exact series solution®? for each frequency component of interest. In imple-
mentation of the series solution, summations were truncated when the magnitude of a single
coefficient dropped below 107'2 times the sum of all coefficients. These single-frequency
solutions, which correspond to Fourier coefficients of the time-domain scattered field, were
weighted and inverted by discrete Fourier transform to obtain the exact time-domain scat-
tered field associated with the incident pulse of Eq. (25). Scattering from cylinders of radius
4.0 mm and contrasts ranging from y = 0.001 to y = 0.14 was computed on a measurement
circle of radius 176 mm for 384 incident-wave directions and 96 measurement directions.
The sampling rate employed was 9.14 MHz.

Solutions were also obtained for a large-scale breast model using a time-domain k-space
method.3® The breast model was obtained by image processing a coronal cross section of
three-dimensional photographic data from the Visible Human Female data set with a pixel
size of 0.333 mm. Hue, saturation, and value were mapped to sound speed and density
using empirically determined relations; sound speed and density were assumed to be linearly
proportional ® Sound speed and density maps were smoothed using a Gaussian filter to

reduce artifacts associated with the slicing process. The tissue map employed is shown in
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Fig. 3. This tissue model was scaled down by a factor of 0.6 from the original data set
and mapped onto a grid of 512 x 512 points with a spatial step of 0.111 mm. A time step
of 0.0546 us, corresponding to a Courant-Friedrichs-Lewy number of 0.75, was employed.
Based on the scaling of the tissue model, the scattered field obtained is equivalent to that
of the full-scale breast model (largest dimension 75 mm) for a center frequency of 0.5 MHz.

Scattered acoustic pressure signals were recorded at a sampling rate of 9.15 MHz for
198 incident-wave directions. A circle of 512 simulated point receivers, which had a ra-
dius of 9.0 mm in these computations, completely contained the scaled-down breast model.
Farfield waveforms were computed by Fourier transforming the time-domain waveforms on
the nearfield measurement circle, transforming these to farfield waveforms for each frequency
using a numerically exact transformation method,?13 and performing inverse Fourier trans-
formation to yield time-domain farfield waveforms at a measurement circle of radius 234 cm.
All forward and inverse temporal Fourier transforms, as well as angular transforms occurring
in the nearfield-farfield transformation, were performed by fast Fourier transforms (FFT).3%¢

The time-domain imaging method was directly implemented using Eq. (20), evaluated
using straightforward numerical integration over all incident-wave and measurement direc-
tions employed. In one implementation, similar to that from Ref. 18, images were evaluated
only for the time ¢t = 0. In this case, before evaluation of the argument 7 for each signal,
the time-domain waveforms were resampled at a sampling rate of 16 times the original rate.
This resampling was performed using FFT-based Fourier interpolation. The inverse Hilbert
transform was implicitly performed using the same FF'T operation. Values of the pressure
signals at the time 7 were then determined using linear interpolation between samples of the
resampled waveforms. The integrals of Eq. (20) were implemented using discrete summation
over all transmission and measurement directions employed.

In the implementation of reconstructions for multiple times, storage and computation
time requirements necessitated modification of the algorithm implementation. For multiple-
time reconstructions, a reconstruction of ,(r,t) at the sampling rate of the scattering data

was first obtained by direct integration. Delays of the time-domain scattered waveforms
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were implemented using cubic spline interpolation.?” Reconstructions were performed for
an interval of length 2.4 us, multiplied by a window with cosine tapers of length 0.6 us at
each end, and upsampled by a factor of eight using Fourier interpolation. Inverse Hilbert
transformation of 7, (r, t) was performed by the same FFT operation used to implement the
Fourier interpolation. Finally, the temporal position of the envelope peak was found from

the zero crossing of the envelope derivative,

6 vr,tea +iH_1 vr,tea
(T, tpeak) n (s trea)] _ 26)

The derivative in Eq. 26 was evaluated using a second-order-accurate center-difference
scheme.

Focus correction was implemented using a straight-ray approximation, which is based
on the assumption that background inhomogeneities result only in cumulative delays (or
advances) of the incident and scattered wavefronts. In this approximation, the total delay
for an image position r and a direction ¢ is given by Eg. (22) and aberration-corrected
reconstructions are performed using Eq. (20) with 7 replaced by the corrected delay term
of Eq. (23). The path integrals of Eq. (23) were performed using an algorithm based on the
digital differential analyzer (DDA) image processing method.?® This method very efficiently
finds the nearest neighbors to a line of specified starting position and slope; thus, the inte-
grals can be evaluated by simple summation without any need for interpolation. Since the
reconstruction process acts in part as a low-pass filter, the integral performed using nearest
neighbors to the line of interest is sufficiently accurate.

Tterative focus correction was performed by first constructed an uncorrected image, either
for t = 0 or ¢t = tpeak. The reconstructed sound speed was then employed to evaluate the
delay corrections of Eq. (23) using the DDA implementation of the integrals from Eq. (22).
To avoid spurious modification of image points outside the support of the scatterer, the

delay term of Eq. (23) was multiplied by the factor

Ao L 7% (r)] = Ymax/2 (27)

(1 — cos 2 |1 (r)] /¥max) /2, 17(X)] < Vmax/2,
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where Ymax is the maximum value of |y,(r)| for the previous reconstruction and the temporal
criterion (¢ = 0 or ¢ = tpeax) employed.

Tteration proceeded as follows. A new reconstruction was compared to the previous
reconstruction; if the relative RMS error between the two was greater than 5%, further
iterations were carried out up to a prescribed maximum number of iterations, taken here
to be 20. Due to the efficiency of the delay computation, each iteration required about the

same computation time as the original reconstruction.
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IV. NUMERICAL RESULTS

The performance of aberration-corrected time-domain diffraction tomography imaging,
using the two approaches introduced above, is illustrated by the numerical examples pre-
sented in this section.

Figure 1 shows reconstructions of a homogeneous cylinder with a radius of 4 mm and a
contrast v = 0.08. For the center frequency of 2.5 MHz, this corresponds to a nondimensional
radius ka = 41.2. Panel (a) shows cross sections of reconstructions obtained using thet =0
criterion. The “0” curve refers to an uncorrected (Born approximation) reconstruction,
while curves labeled “1” and higher correspond to subsequent iterations of focus correction
performed using the delay correction of Eq. (23) as described in the Computational Methods
section. Panel (b) shows corresponding cross sections obtained using the ¢ = fpeax criterion.
One may observe that iterative focus correction greatly improves reconstructions for the
¢ = 0 criterion. The initial (Born) reconstruction shows mainly the edges of the cylinder;
further iterations improve the accuracy within the cylinder interior. This process somewhat
resembles the inverse scattering method of layer stripping,*** in which an unknown medium
is iteratively reconstructed with each iteration probing further into the medium interior.

In contrast, iterative focus correction provides little, if any, improvement to the re-
constructions obtained using the ¢ = tpeu criterion [Fig. 1(b)]. In this case, the initial
reconstruction captures the cylinder interior very well. Further iterations slightly increase
the reconstructed contrast near the edges, but also introduce artifacts not present in the
initial reconstruction. After convergence, the reconstructed value is more accurate than the
¢ = 0 image for the cylinder edges but less accurate for the interior.

For the reconstructions shown in Fig. 1, images of size 128 x 128 pixels were computed
from time-domain scattering data for 96 incident-wave directions and 384 measurement
directions. The computation time required on a 650 Mhz Athlon processor was about
6 CPU minutes per iteration for the ¢ = 0 image criterion (about 38 minutes total for

the six iterations performed) and about 45 CPU minutes per iteration for the ¢ = fpeax
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criterion.

The relative performance of iterative focus correction using the two image criteria is
illustrated in Fig. VI. Here, reconstructions were based on exact scattering data for a 4 mm
cylinder with contrast 0.01 < v < 0.12. Since previous studies have showx_l that the accu-
racy of diffraction tomography reconstructions is roughly a function of the nondimensional
parameter ka - 7,'%20 the relative error is plotted as a function of this nondimensional pa-
rameter. The Born approximation is considered to provide useful images for cylinders up to
ka-y ~ 2;'%2 by this standard, the iterative focus correction implemented here increases the
upper limit of validity for ¢ = 0 images to ka -y ~ 4. As in Fig. 1, iterative focus correction
is seen to provide little improvement in accuracy for images obtained using the ¢ = #jeax
criterion. The quantitative accuracy of reconstructions is slightly increased by iteration for
large values of the parameter ka -, but can be slightly diminished for smaller values. Also
notable is that iteration using the ¢ = 0 criterion fails completely above ka -y ~ 4, while
the ¢ = tpeqx Criterion reaches a comparable error level around ka - ~ 4 and then increases
gradually in error with increasing scatterer contrast.

Quantitative images of a large-scale 2D breast model, used to generate simulated scat-
tering data in the manner described in the Numerical Methods section, are shown in Figs. 3
and 4. Panel (a) of Fig. 3 shows the 2D model used to generate the synthetic data. Panel
(b) of Fig. 3 shows the image reconstructed using the ¢ = fpeax criterion without any focus
correction. In this case, the reconstructed image appears to be artifactually sharpened com-
pared to the original model. Although there is a close correspondence between most features
of the model and the reconstruction, some differences exist. For example, the reconstructed
skin thickness is significantly smaller than that of the actual model in several locations.

Reconstructions of the 2D breast model, obtained using the ¢ = 0 criterion and iterative
focus correction, are shown in Fig. 4. In this case, the initial (Born) reconstruction ren-
ders the skin layer fairly well, but the interior of the breast model is reconstructed poorly.
Subsequent iterations improve the rendering of the connective and glandular tissue struc-

ture within the breast. Both focus quality and quantitative accuracy of the reconstructions
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improve with iteration. The converged reconstruction (iteration 5) resembles a low-pass
filtered version of the original model [Fig. 3(a)] except for a small area of spuriously high
reconstructed contrast within the interior glandular tissue.

For the large-scale 2D breast model, computation times required for 256 x 256
pixel images, 128 incident-wave directions, and 512 measurement directions were about
1.3 CPU hours per iteration for the ¢ = 0 image criterion (8.0 hours for the six iterations up
to convergence) and about 4.6 CPU hours for the initial reconstruction using the ¢ = #,cax

criterion.
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V. DISCUSSION

The two abberation correction methods considered here may be compared as follows.
Both methods have the effect of improving the alignment of the time-domain reconstruc-
tion 7,(r,t). In the case of ¢ = 0 images with adaptive focus correction, the time-domain
reconstruction is implicitly aligned by compensation for propagation delay within the inho-
mogeneous medium. The ¢ = #peqx criterion can be thought of as an explicit alignment of
the time-domain reconstruction.

Previous qualitative studies of the validity of the Born approximation'®?® have estab-
lished a threshold for valid Born reconstructions at ka -y ~ 2, which corresponds to a
normalized RMS error of about 0.5 [Fig. VI]. Given this somewhat arbitrary threshold
for the maximum allowable error, both aberration correction methods employed here have
a similar range of validity, up to about ka -y ~ 4. Thus, either approach extends the
parametric range of validity for time-domain diffraction tomography by about a factor of
two.

Each image criterion also introduces characteristic artifacts. The t = 0 criterion with
adaptive focusing acts in part as a low-pass filter to reconstructions, consistent with the
well-known low-pass filtering effect of conventional diffraction tomography.! The ¢ = tpeax
criterion introduces edge artifacts that have the qualitative effect of erroneously sharpening
images. Still, notable is that adaptive demodulation from the waveform v(t), as employed
in Ref. 21, may provide more robust reconstruction quality, particularly for scattering data
corrupted by noise.

The ¢ = 0 image criterion can provide faster reconstructions, since the reconstructed
contrast 7,(r, t) needs only to be evaluated for one time. However, for large or high-contrast
scatterers, iterative aberration correction is necessary to obtain high-quality reconstructions.
The t = tpeax Criterion requires longer computation time for each reconstruction; however,
because this criterion implicitly incorporates a form of aberration correction, subsequent

iterations provide little additional benefit. As a result, computation times required for a
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given level of accuracy can be comparable for either image criterion.

Notable is that reconstruction quality, as characterized by criteria such as the point-
spread function of a quantitative image, can be improved by optimization of the weight
9(f).2* Although the delay-and-sum reconstruction formula (20) depends on a frequency
weight determined by the incident waveform u(t), any desired weight 9(f) can still be applied
by preprocessing of the scattering data. That is, the inverse problem associated with an
arbitrary incident waveform w(t) (such as the impulse response of a particular electroacoustic
transducer) can be transformed into the inverse problem associated with a desired waveform

u(t) by applying the deconvolution operation

[pe(6, 0,y = F~ %%F[psw,a,t)]w(t) , (29)

where F denotes temporal Fourier transformation, to the measured scattering data. This
operation transforms the measured data into the corresponding data that would be measured
using an optimal incident pulse u(t). For reasons of stability, the effective bandwidth of @(f)
should be comparable to that of @(f) (as determined, for instance, by the noise floor of a
given measurement).

The adaptive focusing implemented here employed a simple straight-ray approximation
for wavefront aberration incurred in tissue. However, the principle of aberration correction
by adaptive focusing should allow greater improvements to be gained using more complete
distortion models. For example, the distortion caused by a strongly-scattering medium can
be accurately modeled using a full-wave computational method such as that of Ref. 33. In
principle, appropriate deconvolution could be employed to remove the effects of the interven-
ing medium for each incident-wave direction, measurement direction, and image location, so
that an aberration-corrected reconstruction could then be performed by applying Eq. (20)
the corrected scattering data. In some cases, a priori information on the scattering medium
may be exploited to improve the convergence of such adaptive focusing algorithms. This
basic approach, in which a linearized reconstruction is performed on scattering data that

has been transformed to remove higher-order scattering effects, is common to a number of
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existing nonlinear inverse scattering methods.*!

The methods of aberration correction proposed here differ from most adaptive imaging
methods for pulse-echo ultrasound (e.g., Refs. 12 and 16) because adaptive focusing is per-
formed using a direct reconstruction of the medium rather than a simpler distortion estimate.
Thus, aberration correction using quantitative imaging methods could be of great interest for
pulse-echo systems such as current clinical scanners. However, the limited spatial-frequency
information provided in pulse-echo modeb!® reduces the quality of quantitative images of
this kind. One possible approach to increasing the spatial-frequency content of pulse-echo
quantitative images could be to apply deconvolution to the scattered signals.*27%* If such
deconvolution methods could increase the spatial-frequency coverage sufficiently to obtain
accurate (although possibly low-resolution) quantitative sound-speed maps, such maps could

be employed directly for adaptive focusing in pulse-echo images.
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VI. CONCLUSIONS

Two related approaches to aberration correction for quantitative ultrasonic imaging have
been presented. These methods are based on approximate solutions to the linearized time-
domain inverse scattering problem, implemented using adaptations of two previous time-
domain diffraction tomography methods.’®?! One approach, based on a delay-and-sum re-
construction formula, applies adaptive focusing based on estimates of the scattering medium.
The other approach implements aberration correction by applying appropriate delays to a
time-dependent reconstruction.

Numerical results show that each of the considered aberration correction approaches
increases the parametric range of validity for time-domain diffraction tomography by about
a factor of two. The extended range of validity is sufficient to allow effective quantitative
imaging of large-scale scattering media, such as the 75 mm breast model imaged here at
0.5 MHz. Adaptive focusing correction based on more complete scattering models could
further increase this range of validity. Given sufficient a priori information on the unknown
medium, the principle of focus correction may allow accurate quantitative images to be
obtained for strongly-scattering media at larger scales and higher frequencies.

The approaches presented here may also be useful for aberration correction in pulse-echo
imaging. If sufficiently broadband information can be extracted from pulse-echo scattering
data, the time-domain diffraction tomography methods considered here may allow quantita-
tive tissue characterization using clinically convenient measurement configurations. Quanti-
tative maps obtained in this manner would also be useful as medium models for aberration

correction in conventional b-scan and synthetic-aperture imaging.
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FIG. 1. Cross sections of time-domain reconstructions with adaptive focus correction for both
imaging criteria. Reconstructions are of a homogeneous cylinder with a radius of 4 mm (ka = 41.2)
and a contrast v = 0.08. In each case, the “0” curve refers to an uncorrected reconstruction, while
curves labeled “1”7 and higher correspond to subsequent iterations of focus correction. (a) ¢ = 0.

(b) i = tpeak-
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FIG. 2. RMS error for reconstructions of a 4.0 mm radius cylinder with both imaging criteria,
with adaptive focus correction (solid lines) and without (dashed lines) (a) ¢ = 0. (b) ¢ = tpeak-

28




FIG. 3. Reconstruction of a large-scale two-dimensional breast model from simulat

ed scattering
data. (a) Model. (b) Initial time-domain reconstruction using ¢ = t,eq) criterion.

29




FIG. 4. Images of the large-scale breast model obtained using the ¢ = 0 criterion with adaptive

focusing. Panel 0 shows the initial (linear) reconstruction and panels 1-5 show the subsequent
iterations up to convergence.
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and attenuation in the human chest wall

T. Douglas Mast
Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

Laura M. Hinkelman®
Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627

Leon A. Metlay
Department of Pathology and Laboratory Medicine, University of Rochester Medical School, Rochester,
New York 14642

Michael J. Orr
Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627

Robert C. Waag
Departments of Electrical and Computer Engineering and Radiology, University of Rochester, Rochester,

New York 14627
(Received 5 April 1999; accepted for publication 23 August 1999)

A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been
extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and
bone. This extended model has been used to simulate ultrasonic propagation through anatomically
detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented
by two-dimensional maps determined by staining chest wall cross sections to distinguish between
tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned
images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then
assigned a sound speed, density, and absorption value determined from published measurements and
assumed to be representative of the local tissue type. Computational results for energy level
fluctuations and arrival time fluctuations show qualitative agreement with measurements performed
on the same specimens, but show significantly less waveform distortion than measurements.
Visualization of simulated tissue—ultrasound interactions in the chest wall shows possible
mechanisms for image aberration in echocardiography, including effects associated with reflection
and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center
frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform
distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations

increase to a lesser degree. © 1999 Acoustical Society of America. [S0001-4966(99)03212-9]
PACS numbers: 43.80.Qf, 43.80.Cs, 43.58.Ta, 43.20.Fn [FD]

INTRODUCTION

Echocardiography is widely employed for diagnosis of
cardiac diseases including valvular defects, pericardial effu-
sion, and wall motion abnormalities.!~ Commonly, echocar-
diography is performed noninvasively through the chest
(transthoracic) using an external probe placed on the chest
wall. The chest wall, however, can considerably degrade im-
age quality because acoustic paths between the skin and
heart may contain ribs and cartilage as well as inhomoge-
neous muscle and fatty tissue. The result is that as many as
10-30% of patients cannot be successfully imaged with
present transthoracic techniques.* This limitation of transtho-
racic echocardiography has led to the development of transe-
sophageal echocardiography, in which the heart is imaged by
a transducer inserted into the esophagus.'™ Although transe-
sophageal echocardiography provides superior image qual-

*Present address: Department of Meteorology, The Pennsylvania State Uni-
versity, University Park, PA 16802.
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ity, resulting in high diagnostic sensitivity and specificity,
the invasiveness of the procedure is accompanied by in-
creased risk.>® For this reason, improvements in the nonin-
vasive transthoracic approach are desirable, for example, by
the development of methods to compensate for image degra-
dation caused by the chest wall.

An understanding of ultrasonic aberration produced by
the chest wall is important to the development of appropriate
compensation methods for transthoracic ultrasonic imaging.
Direct measurements of ultrasonic distortion produced by
chest wall specimens’® have been helpful. Results reported
in Ref. 7 show that propagation through the chest wall causes
substantial beam distortion. However, that study did not dis-
tinguish the effect of soft tissue from effects caused by rib
structures. In Ref. 8, a detailed study of distortion caused by
soft tissue paths indicates that soft tissue distortion in the
chest wall is substantially less than the corresponding distor-
tion in the human abdominal wall. However, distortion
caused by ribs was only treated qualitatively in the latter

© 1999 Acoustical Society of America 3665




study because the physical mechanisms of rib-induced dis-
tortion could not be adequately described by the method re-
ported there. Although a model of ultrasound propagation in
the chest wall has previously been described,” that model is
based on coarse depictions of chest wall morphology includ-
ing homogeneous tissue layers and evenly-spaced,
uniformly-shaped ribs. These previous experiments and
simulations, therefore, have left gaps in the current knowl-
edge about the physical causes of ultrasonic wavefront dis-
tortion caused by the chest wall.

Recent work on the simulation of ultrasonic pulse
propasc,vationw‘12 has provided insight about the wavefront
distortion caused by the human abdominal wall. Although
these studies have provided specific information about the
relationships between soft tissue morphology and ultrasonic
wavefront distortion, the work is not fully applicable to dis-
tortion caused by the human chest wall. The morphology of
chest wall soft tissue is different from that of the abdominal
wall in ways that can affect ultrasonic wavefront distortion.®
Furthermore, imaging through the chest wall is complicated
by ribs that limit the usable acoustic window size and cause
scattering and reflection.

The study reported here applies quantitative simulation
methods, similar to those presented in Refs. 10 and 12, to
anatomically detailed chest wall models that include the ribs.
Accurate depiction of rib—ultrasound interactions requires
not only representation of the strong reflections associated
with sound speed and density contrast between ribs and soft
tissue (already accurately modeled by the finite difference
method of Ref, 10), but also modeling of the strong losses
associated with propagation through bone and cartilage. For
this reason, the finite-difference method described in Ref. 10
has been extended to include tissue-dependent absorption.
Quantitative descriptions of the distortion caused by soft tis-
sues are obtained by statistical analysis of simulated distor-
tion. Visualizations of wavefronts propagating through maps
of chest cross sections provide evidence about physical rela-
tionships between wavefront distortion and the morphology
of ribs and soft tissue structures in the chest wall. Further
insight about wavefront distortion mechanisms is provided
by a comparison of distortion results for incident pulses of
different center frequencies.

l. THEORY

Ultrasonic pulse propagation through the human chest
wall is modeled here using the equations of motion for a
fluid of variable sound speed, density, and absorption. The
tissue is assumed motionless except for small acoustic per-
turbations. Absorption is included using an adaptation of the
Maxwell solid model,”® in which all absorption effects are
represented by a single relaxation time. This assumption re-
sults in frequency-independent absorption characteristics.
Equivalent treatments of tissue-dependent absorption have
been employed by a number of previous models for ultra-
sonic propagation in biological tissues. 4~ For such a fluid,
the linearized equations of mass conservation, momentum
conservation, and state can be combined to obtain the first-
order, two-dimensional, coupled propagation equations,
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Here, p(x,y,t) is the acoustic perturbation in fluid pressure,
v(x,y,t) is the vector acoustic particle velocity, p(x,y) is the
ambient -density, ¢(x,y) is the ambient sound speed, and
a(x,y) is an absorption coefficient that is equivalent to the
inverse of a spatially-dependent relaxation time 7(x,y).

The absorption coefficient a, defined as a real quantity,
is related to the energy lost per unit length as follows. The
propagation equations (1) and (2) lead, for plane-wave
propagation of the form p= e!x= 00 1o the dispersion rela-
tion
w ia
VIt ®3)

[

k:

where k is the complex wavenumber, ® is the (real) radial
frequency 27f, and c is the (real) sound speed. The imagi-
nary part of the wavenumber & is the absorption in nepers per
unit length. Thus, the absorption parameter & can be ob-
tained by a numerical solution of the equation

loss (dB/length) ) ia
Im[k]= ——————=Im| = \[ 1+ —|.
20 logg(e) c ®

Solution of Eq. (4) results in wavenumbers having a real part
that differs from w/c. Since this discrepancy is less than 1%
over the range of tissue properties employed in the present
study, use of absorption coefficients computed from Eq. (4)
does not significantly affect propagation characteristics ex-
cept by adding the specified absorption.

Equations (1) and (2) were solved pumerically using the
finite-difference time-domain (FDTD) method described in
Refs. 10 and 17. This method is a two-step MacCormack
predictor—corrector algorithm that is fourth-order accurate in
space and second-order accurate in time. The computations
employed a spatial step size of 15 points per wavelength at
the pulse center frequency of 2.3 MHz. Time step sizes were
computed using a Courant—Friedrichs—Lewy number of
0.25. Further details on this class of finite difference algo-
rithms can be found in Refs. 18-20.

The initial condition was chosen to model the experi-
mental configuration in Ref. 8, in which a spatially broad,
nearly planar wavefront was emitted from a wideband,
pulsed, unfocused source far from the tissue layer. The initial
wavefront was represented in the present simulation as a
plane wave pulse propagating in the +y direction:

Q)

p(x,y,0)=—sin[ko(y —yo)] o~ y0)H(20?),

u (x ’y ,0) = 0’
and &)

_px,y,0)
V(-":J’:O)— pc )
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where the wavenumber kg is equal to 2mfy/c for a center
frequency of fo, o is the Gaussian parameter of the pulse
temporal envelope, and u and v are the x and y components
of the vector acoustic particle velocity v. The spatial Gauss-
ian parameter o was chosen to simulate the bandwidth of the
pulse used in the experiments, as discussed below in the
Method section.

The computational configuration is analogous to that de-
scribed in Ref. 10. The domain of computation is two-
dimensional, with the y direction taken to be parallel to the
direction of propagation and the x direction parallel to the
initial wavefront. As in Ref. 10, periodic boundary condi-
tions were applied on the domain edges that were parallel to
the direction of propagation, while radiation boundary con-
ditions were applied on the edges perpendicular to the direc-
tion of propagation.

1. METHOD

This study employed six chest wall specimens obtained
during the autopsies of four different donors between 79 and
85 years of age at death. One specimen (4L) was from a
white female, while the others were from white males. After
the specimens were obtained, they were stored unfixed at
—20°C and thawed when needed for study. Wavefront dis-
tortion measurements were made on these and other speci-
mens as part of a study described in Ref. 8. In those mea-
surements, 2.3 MHz ultrasonic pulses generated by a 0.5-in.
piston transducer propagated through individual chest wall
specimens immersed in a 37 °C water bath and the transmit-
ted pulses were measured by a 96-element broadband cardiac
array scanned to synthesize a two-dimensional aperture. Sta-
tistics describing wavefront distortion, including arrival time
fluctuations, energy level fluctuations, and wave shape dis-
tortion, were computed for the measured pulses.

For the present study, six of the previously measured
specimens were cut into ~7-mm thick cross sections using
the technique described in Ref. 10. The slices were then
fixed and stained with a modified Gomori’s trichrome stain
according to the procedure detailed in Ref. 21, so that tissue
types could be distinguished. This stain colored muscle tis-
sue red and connective tissue blue while leaving the fat its
natural color. Calcified tissue, including bone and cartilage
in the current specimens, was not differentially stained by
this technique, but the natural contrast between bone, carti-
lage, and marrow was sufficient to allow tissue mapping.
Full-color 300 d.p.i. images of the cross sections were cre-
ated by placing each stained tissue cross section directly onto
the surface of a flatbed digital scanner. Image editing pack-
ages (Adobe Photoshop, Version 3.0, and the Gnu Image
Manipulation Program, Version 1.0) were used to manually
segment the cross sectional images, i.e., to map the images
into regions that corresponded to one of six media. The me-
dia were water (representing water external to specimens or
blood inside blood vessels), fat (including subcutaneous fat,
fat interlaced within muscle layers, and marrow), muscle,
connective tissue (including skin, septa, and fasciae), carti-
lage, and bone (including cortical bone and trabeculae within
cancellous bone).
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The nomenclature employed here for the cross sections
corresponds to that of Ref. 8 for the whole specimens from
which the cross sections were taken; each cross section is
identified by a donor number together with “L”” or ‘R’ to
indicate whether the corresponding specimen was taken from
the left or right side of the breastplate. Additional numbers
were used in Ref. 8 to indicate the intercostal space used in
each measurement; here, lower-case letters are used to indi-
cate independent acoustic paths. Wavefront distortion mea-
surement results from four of the specimens employed here
(4L, 5L, 7L, and 7R) were reported in Ref. 8. Distortion
statistics for specimens 8L and 8R were not presented in Ref.
8 because of limited acoustic windows. No new measure-
ments were made for the present study; statistics describing
measured distortion are taken directly from Ref. 8.

The six segmented tissue maps are shown in Fig. 1. All
of the cross sections contain a layer of septated subcutaneous
fat below the skin. Most of the cross sections also include a
Jayer composed primarily of the major pectoral muscles and
their connective fasciae above the ribs. Between the ribs are
regions of muscle (internal intercostal and external intercos-
tal groups) interlaced with fat. In some cases, additional thin
layers of fat between muscle layers are apparent. Cross sec-
tions 4L and 7R are cut along the intercostal spaces parallel
to the ribs, so that in each a wide cross section of soft tissue
appears. Cross sections 5L, 7L, and 8L are cut perpendicular
to the ribs, so that each contains soft-tissue acoustic paths
with width equal to the width of the corresponding intercos-
tal spaces. Cross section 8R is cut perpendicular to the ster-
num at a location of large curvature in the ribs, so that the
ribs are diagonally sectioned. Several blood vessels appear in
cross sections 4L, 7L, 7R, and 8R; the largest of these is the
internal mammary artery.

The basic structure of the cross sections is consistent
with standard descriptions of chest wall anatomy.?>?* Ribs
appear in each cross section; each rib is composed of a *‘cos-
tal cartilage’’ near the sternum (shown in most of the cross
sections considered here) attached to a “‘true rib*’ (composed
primarily of cancellous bone) at the edge farther from the
sternum. In the cross sections considered here, the costal
cartilages are primarily composed of calcified cartilage, sur-
rounded by a thin layer of cortical bone (solid, dense bone
with microscopic porous structure), which in turn is sur-
rounded by the periosteum, a thin membrane of connective
tissue. Cross sections 7L and 7R also appear to contain a
small amount of cortical bone in the central portion of the
ribs. This phenomenon may be associated with advanced cal-
cification known to occur in aging humans.?* Cancellous
bone, composed of thin trabeculae that form macroscopic
cells filled with marrow, is seen in all the ribs of cross sec-
tion 5L, which was taken at a distance farther from the ster-
num so that the true ribs, rather than the costal cartilages,
were included in this cross section. Some cancellous bone is
also apparent within portions of the ribs of cross sections 4L
and 8R. In each case, the cancellous bone is surrounded by a
thin layer of cortical bone and by the periosteum. A portion
of the sternum, composed of cancellous bone surrounded by
cortical bone, is visible at the left side of cross section 4L.

The density and sound speed grids needed for the finite-
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FIG. 1. Chest tissue maps used in simulations. In each map, blue denotes skin and connective tissue, cyan denotes fat, purple denotes muscle, orange denotes
bone, and green denotes cartilage. Blood vessels appear as small water-filled (white) regions. Simulated apertures are indicated using lower-case letters for
each cross section; the letters correspond to the acoustic path labels used throughout, while the length of the arrow beneath each letter corresponds to the extent
of the simulated aperture. Smaller arrows indicate 55-element (11.60-mm) apertures while large arrows indicate 68-clement (14.28-mm) apertures.

difference computation were created by mapping regions of
the segmented tissue images to reference density and sound
speed values for the five tissue types and water. The water
sound speed and density employed are those of pure water at
body temperature (37.0 °C).2%% Sound speeds for muscle
and fat were obtained by averaging values for human tissues
given in Refs. 27 and 28. A representative sound speed for
comnective tissue was determined using an empirical formula
relating collagen content to ultrasonic sound speed29 together
with a measured value for the collagen content of human
skin.3® The sound speed employed for bone was obtained
from an average of values reported in Ref. 31 for
longitudinal-wave propagation in human cortical bone. The
sound speed used here for cartilage is that given in Ref. 32 as
quoted in Ref. 27. Density values for soft tissues were deter-
mined from Ref. 33 by averaging values reported for adipose
tissue, skeletal muscle, and skin, respectively. Density values
employed for bone and cartilage are average values from
Ref. 31.

Absorption values were determined from attenuation
measurements summarized in Ref. 27 for human fat at 37 °C,
human bicep muscle at 37 °C, human skin at 40 °C, human
and bovine cartilage at 23 °C, and human skull (temperature
not reported). Attenuation values reported at other ultrasonic
frequencies were interpolated (or, for the skull data, extrapo-
lated) to obtain values for 2.3 MHz (corresponding to the
pulse center frequency employed here and in Ref. 8) assum-
ing a linear dependence of attenuation on frequency. This
assumed linear dependence is a simplifying approximation;
tissue measurements show that attenuation varies approxi-
mately as a 1P, where B is typically between 0.9 and 1.5
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for various human soft tissues.>* The absorption for water
was estimated by extrapolating frequency- and temperature-
dependent absorption values summarized in Ref. 35 to 2.3
MHz and 37.0 °C. The values of tissue parameters employed
in the present study are given in Table L.

The finite-difference program was employed to compute
propagation of a plane wave pulse through each scanned
cross section from the skin to the peritoneal membrane,
mimicking the propagation path employed in the distortion
measurements of Ref. 8. The spatial step size of the finite-
difference grid was chosen to be 0.0442 mm, or 1/15 wave-
length in water at the center frequency of 2.3 MHz. The
temporal step size was chosen to be 0.00725 us, for an op-
timal Courant—Friedrichs—Lewy number cAt/Ax of 0.25.%
The Gaussian parameter ¢ of the source pulse was chosen to
be 0.4766 mm in accordance with the experimentally mea-
sured pulse bandwidth (for pulses transmitted through a wa-
ter path) of 1.2 MHz. A visual comparison confirmed that the

TABLE 1. Assumed physical properties for each tissue type employed in the
simulations.

Tissue Sound speed Density Absorption
type (i pis) (g/ce) (dB/mm)
Water 1.524 0.993 0.0007
Fat 1.478 0.950 0.12
Muscle 1.547 1.050 0.21
Connective 1.613 1.120 0.37
Cartilage 1.665 1.098 097
Bone 3.540 1.990 4.37
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simulated pulse closely matched the measured pulses in
shape and length.

Fach simulation was performed on a workstation with
128 MB of random-access memory. Finite-difference grids
on the order of 15001000 points were employed. At each
time step, the wave field was updated on a grid subset chosen
to include the entire support of the acoustic wave but to
exclude quiescent regions. The entire pressure field was
saved as a raster image at intervals of 0.725 us for later
visualization. The computation time for each simulation was
on the order of five hours.>

Signals were recorded for 8.62 us at a sampling fre-
quency of 138 MHz by simulated apertures with dimensions
close to those in the experimental study of Ref. 8. Positions
of all simulated apertures employed are sketched in Fig. 1.
The simulation of receiving elements was performed by in-
tegrating the locally-computed pressure over the element
pitch of 0.21 mm. For cross sections cut parallel to the ribs,
the simulated apertures contained 68 elements for an aperture
width of 14.28 mm. For cross sections cut perpendicular to
the ribs, 55 simulated elements were used to form 11.55 mm
apertures. Element directivity effects were implicitly incor-
porated by the integration of acoustic fields over the width of
each element; the resulting directivity functions correspond
to those for an idealized line element of width 0.21 mm.

A one-dimensional version of the reference waveform
method %37 was used to calculate the arrival time of the pulse
at each receiving position in the simulation data. In this
method, the relative arrival time of each received waveform
is computed by cross-correlation with a reference waveform.
The arrival time fluctuations across the receiving aperture are
then calculated by subtracting a linear fit from these calcu-
lated arrival times, and the root-mean-square value of these
fluctuations is computed. Energy level fluctuations in the
data were calculated by summing the squared amplitudes of
each waveform over a 2.4-us window that isolated the main
pulse, converting to decibel units, and subtracting the best
linear fit from the resulting values. As for polynomial fits
previously employed in wavefront distortion measurements,®
the purpose of the linear fit removal in each case was to
compensate for gross changes in tissue thickness across the
array. Variations in pulse shape across the aperture were
evaluated using the waveform similarity factor;>’ this quan-
tity, which can be considered a generalized cross-correlation
coefficient, has a maximum of unity when all received wave-
forms are identically shaped.

To test the frequency dependence of chest wall wave-
front distortion, propagation through eight portions of speci-
mens, each containing only soft tissue, was also computed
for wavefronts having center frequencies of 1.6 and 3.0
MHz. In each case, the initial wavefront was chosen to have
the same temporal envelope as above. The absorption coef-
ficient at these frequencies for each tissue type was extrapo-
lated from the value employed at 2.3 MHz using the assump-
tion that absorption depended linearly on the center
frequency. The spatial and temporal sampling rates were also
varied in inverse proportion to the pulse center frequency.
All runs were otherwise identical in configuration and pro-
cessing to those described above.
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TABLE II. Statistics of simulated wavefront distortion caused by thirteen
soft tissue paths within chest wall cross sections. The “‘Path’’ column shows
the cross section label and aperture letter for each path; these labels corre-
spond to those shown in Fig. 1. The statistics shown include the average
specimen thickness for the tissue path considered, rms values and correla-
tion lengths (CL) of the arrival time fluctuations (ATF) and the energy level
fluctuations (ELF), the waveform similarity factor (WSF), and the total at-
tenuation.

ATF ELF
Thickness mms CL mms CL . Attenuation
Path (mm) (ns) (mm) (dB) (mm) WSF (dB)
4L-c 15.4 320 060 198 1.68 0.981 5.62
4L-d 12.7 100 258 046 123 0999 4.08
4L-e 16.0 100 137 161 174 0998 5.26
4Lf 17.0 173 248 092 161 0999 5.33
5L-a 11.0 116 095 151 113 0991 429
5L-c 15.0 148 103 115 119 0.99% 5.01
7L-a 16.2 168 264 095 129 099 5.46
7L-b 14.9 225 266 119 161 0998 4.91
7R-c 17.7 174 177 252 207 0997 5.83
7R-d 21.0 83 110 085 179 0999 7.07
7R-¢ 24.7 137 137 106 162 0997 8.69
8R-a 23.8 266 1.78 258 140 0.992 7.76
8R-b 222 299 144 195 111 0989 6.09
Mean 17.5 178 167 144 150 0.995 5.80

St. Dev. 42 78 071 066 030 0.005 1.33

ll. RESULTS

Simulated wavefront distortion results for 13 soft tissue
paths (i.c., paths in which wavefront distortion was not sig-
nificantly influenced by the ribs) are shown in Table IL
These results indicate that soft tissue paths cause a wide
range of wavefront distortion effects depending on the spe-
cific morphology of each path. For instance, path 7R-c
causes arrival time and energy level fluctuations that are
more than twice the magnitude of those caused by the adja-
cent path 7R-d. This difference is thought to arise from mor-
phological features, including muscle tissue with interlaced
fat and a large amount of connective tissue, of the tissue
within path 7R-c. Also notable is that the specimen thickness
does not closely correspond to variations in distortion. The
largest rms arrival time fluctuation and lowest waveform
similarity factor, for example, are caused by path 4L-c,
which has an average thickness less than the mean for all the
tissue paths.

Wavefront distortion statistics for the 13 soft tissue
paths are graphically summarized in Fig. 2 together with
corresponding statistics for all of the soft tissue measure-
ments reported in Ref. 8. This comparison indicates that
wavefront distortion caused by soft tissues in the chest wall
simulations is comparable to measured distortion. Arrival
time fluctuations and energy level fluctuations for simulated
distortion are slightly less than measured values, but mean
values of both fluctuations for the simulations fall well
within one standard deviation of the corresponding mean
fluctuation for the measurements. The waveform similarity
factor, however, is substantially higher for simulations than
measurements, indicating that simulated waveforms were
distorted considerably less than measured waveforms. Corre-
lation lengths for the simulated distortions are somewhat less
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than measured values. However, consistent with measure-
ments, the mean correlation length of the simulated arrival
time fluctuations is greater than that for the simulated energy
level fluctuations.

As in Ref. 8, rib structures were found to cause much
more distortion than soft tissue alone. The varied nature of
distortion caused by rib effects is illustrated in Fig. 3, which
shows three representative sets of measured signals for speci-
men 8L. These measurements were made during the study
reported in Ref. 8. The first panel shows 96 adjacent mea-
sured signals, along the array direction (approximately par-
allel to the ribs) for propagation through a tissue path within
an intercostal space. The signals are not severely distorted;
secondary arrivals are discernible, but are of lower amplitude
than the main arrival. The second panel shows 96 measured
signals for an elevation over a rib. Here, all signals are se-
verely distorted. Multiple arrivals, as well as high-amplitude
spatially-random fluctuations, are seen. The third panel
shows 50 measured signals along the elevation direction
(perpendicular to the ribs), centered over the soft tissue be-
tween the ribs. Here, the main wavefront is curved rather
than straight, an additional arrival behind the main wavefront
is seen, and portions of the signals from over the ribs (at both
edges of the panel) are advanced relative to the signals from
the central soft tissue region.

The present simulations allow more detailed qualitative
and quantitative investigation of rib effects than were pos-
sible from the previous measurements. Propagation through
two rib-influenced paths is illustrated in Figs. 4 and 5, in
which computed ultrasonic pulses are superimposed on por-
tions of the tissue maps from Fig. 1. (Similar visualizations
of propagation through soft human body wall tissue were
shown in Ref. 10.)

Figure 4 shows propagation through a thin rib, com-
posed chiefly of cancellous bone, in cross section 5L (corre-
sponding approximately to path 5L-b). A strong reflection
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FIG. 3. Measured waveforms for three propagation paths in specimen 8L.
Each panel shows received waveforms on a bipolar logarithmic gray scale
with a dynamic range of 40 dB. The horizontal range shown in each panel is
20 mm and the vertical range shown is 6.4 us. (a) Tissue path between two
ribs, in azimuth direction (parallel to ribs). (b) Path including a rib, azimuth
direction. (c) Tissue path including intercostal space between two ribs, el-
evation direction (perpendicular to ribs).
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ntral rib in cross section 5L (path 5L-b). Panels (a)-(d) show instantaneous acoustic pressure fields at successive
a that spans 20.32 mm horizontally and 14.58 mm vertically. Logarithmically compressed wavefronts are shown
hite representing maximum pressure, and a dynamic range of 57 dB.

FIG. 4. Simulated propagation through the ce
intervals of 2.17 us. Each panel shows an are:
on a bipolar scale with black representing minimum pressure, w

els (a)—(d) show instantaneous wavefields at successive
rtically. Wavefronts are shown using the same format as

an intercostal space in cross section 8L (path 8L-b). Pan
that spans 28.27 mm horizontally and 21.20 mm ve

FIG. 5. Simulated propagation through
intervals of 3.62 us. Each panel shows an area

in Fig. 4.
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occurs at the first interface between bone and soft tissue,
removing a substantial amount of energy from the main
wavefront. The small, high-contrast trabeculae within the rib
cause considerable scattering, as can be observed in panel (b)
of Fig. 4. The scattering causes random fluctuations behind
the main wavefront; these fluctuations somewhat resemble
those seen in the measured data of Fig. 3(b). After passing
through the rib, as seen in panels (c) and (d) of Fig. 4, the
central portion of the wavefront shows substantial attenua-
tion and distortion. However, the average arrival time of the
wavefront is not greatly changed by propagation through the
rib, but is advanced by only about one-half period. This phe-
nomenon apparently occurs because the influence of the
«slow’’ marrow (modeled here as fat) counteracts the influ-
ence of the ““fast’” trabeculae. Noteworthy is that the pre-
dominant ultrasonic wavelength has increased after propaga-
tion through the rib, so that the effective center frequency of
the wavefront has been lowered. Since the absorption model
used in the present study includes only frequency-
independent absorption, the loss of short-wavelength compo-
nents in this simulation results only from frequency-
dependent scattering caused by the trabeculae.

Propagation within path 8L-b, which includes two larger
ribs and the corresponding intercostal space, is illustrated in
Fig. 5. At the position of the cross section, these ribs are
composed primarily of cartilage and surrounded by a thin
layer of cortical bone. Since the cartilage and bone of these
ribs are modeled as homogeneous structures, small-scale
scattering within these tissues did not occur in this simula-
tion. Instead, the wavefront is reflected from interfaces be-
tween cartilage, bone, and soft tissue.

The visualization shown in Fig. 5 provides physical rea-
sons for all the rib-related distortion phenomena seen in the
measured data of Fig. 3(c). The wavefronts propagating
through the ribs show greater attenuation than that in Fig. 4,
both because of the high absorption of the ribs and because
of the reflections noted above. These wavefronts are also
advanced relative to the wavefront propagating through the
intercostal space, because of the higher sound speed of both
bone and cartilage. The wavefront propagating through the
intercostal space is distorted somewhat by the inhomoge-
neous soft tissue path, as can be observed in panels (b) and
(c). However, much greater distortion results from interac-
tion between the wavefront and the ribs. A rightward-
propagating reflection, seen in panels (b) and (c), combines
with the main wavefront in panel (d) to result in severe dis-
tortion at the right side of the central wavefront. A leftward-
propagating reflection from the other rib is also apparent.
Furthermore, diffraction from the edges of the ribs results in
large curvature of the soft tissue wavefront.

Distortion and attenuation statistics for a variety of
simulations employing rib-influenced paths are shown in
Table TII. Footnotes in Table III indicate physical causes of
distortion present within each path. A variety of distortion
and attenuation mechanisms are illustrated. Propagation
through small intercostal spaces (paths 4L-a, 81-b, 8L-f, and
7R-a) causes diffraction effects that introduce substantial
curvature into the wavefront, as seen in Fig. 5. This large-
scale wavefront curvature is associated with large arrival
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TABLE 11, Statistics of simulated wavefront distortion caused by fourteen
tissue paths including rib structures. The footnotes associated with the label
for each path indicate morphological features and physical phenomena that
affected the wavefront distortion computed for that path. The format is
analogous to that in Table I1.

ATF ELF

Thickness rms CL ms CL Attenuation
Path (mm) (ns) (mm) (dB) (mm) WSF (dB)
412> 210 2603 3.00 258 272 0968 15.33
4L-b%¢ 176 1619 190 4.16 149 0.641 43.35
5L-b° 14.2 925 069 3.06 192 0775 2687
TL-c®° 17.8 472 158 533 204 0958 19.66
7R-a®%4 304 1231 212 3.80 178 0.960 16.57
TR-b*° 243 1656 271 6.88 207 0274  43.06
8L-a° 253 1139 118 775 229 0907 3244
8L-b*¢ 228 1097 205 343 122 0974 10.28
8L-c 288 1340 275 3.04 157 0944 4047
8L-d¢ 23.6 789 0.64 3.06 1.55 0950 6.78
8L-¢° 264 2088 191 3.62 150 0810 4427
8L 285 1699 179 502 195 0916 10.70
8L-g° 276 2108 140 336 135 0892 4422
8R-c>¢ 249 814 208 276 125 0962 4432

2Small intercostal spaces.
bCancellous bone.

¢Cortical bone and cartilage.
4Strong rib reflections.
¢Cortical bone within cartilage.

time fluctuation values although the wavefronts generally ap-
pear to be locally smooth. Interference between directly-
transmitted and rib-reflected wavefronts (paths 4L-a, 8L-b,
8L-d, 8L-f, and 7R-a) introduces arrival time, energy level,
and waveform distortion substantially greater than that for
soft tissue paths without ribs. Propagation through cancel-
lous bone (paths 4L-a, 4L-b, 5L-b, and 8R-c) results in con-
siderable attenuation and large waveform distortion, while
propagation through cortical bone and cartilage (paths 4L-a,
4L-b, 8L-a, 8L-c, 8L-¢, 8L-g, 7L-¢c, 7R-a, 7R-b, and 8R-c)
results in even larger attenuation but smaller distortion.
Where bone is embedded within cartilage (paths 7L-c and
7R-b), additional scattering also occurs. For the path includ-
ing a large bone inclusion (path 7R-b), this scattering results
in an extremely high energy level and waveform distortion.

Computed frequency-dependent wavefront distortion
statistics are summarized in Fig. 6. Tissue paths used for
these computations, none of which include rib structures, are
those labeled 4L-d, 4L-f, 5L-a, 5L-c, 8R-a, 8R-b, 7L-a, and
7L-b in Fig. 1. The resuits shown in Fig. 6 indicate that
arrival time fluctuations, energy level fluctuations, and wave-
form distortion all become more severe with increasing pulse
frequency. The most dramatic change is in the energy level
distortion; on average, the rms energy level fluctuations for
the 3.0-MHz signals are 2.3 times those for the 1.6-MHz
signals. Correlation lengths of both arrival time and energy
level fluctuations decrease with frequency, so that the pre-
dominant length scales of ultrasonic wavefront distortion are
seen to decrease with the ultrasonic wavelength. As with the
rms distortion statistics, the most dramatic frequency-
dependent change is in the energy level fluctuations. Still,
even the high-frequency pulses here show substantially
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smaller distortion than that previously observed in experi-
ments and simulations for the human abdominal wall,10-12.38

IV. DISCUSSION

As with earlier simulations of propagation through
tissue,!%'2 the current study shows qualitative agreement
with measured wavefront distortion results for similar
specimens.8 However, the accuracy of the present model is
limited by simplifications of true tissue structure. In particu-
lar, the computational model here does not account for prop-
erty variations within tissue types, tissue microstructure, or
three-dimensional tissue structure. Each of these simplifica-
tions limits the ability of the present model to precisely
mimic experimentally measured ultrasonic wavefront distor-
tion. These limitations are discussed, with respect to soft
tissues, in Ref. 10.

The modeling of ribs adds additional complication. In
the current study, individual trabeculae were assumed to be
composed of tissue having properties identical to cortical
bone, an assumption known as Wolff’s hypothesis.39 The
validity of this hypothesis has been questioned;““’41 however,
measured elastic properties of individual trabeculae vary
widely*®*! and recent work* has provided support for
Wolff’s hypothesis. Thus, the properties employed here for
trabecular bone can be regarded as reasonable order-of-
magnitude estimates. Likewise, the modeling of marrow as
fat tissue is a simplifying assumption that may have limited
validity, although available data suggest that the density and
sound speed of marrow are close to those for other adipose
tissues.’! In addition, the present model for cartilage is based
on measurements of normal cartilage, while the cartilage
present in the specimens employed here was calcified due to
the age of the donors. However, density measurements made
on eight representative samples of calcified cartilage (two
from specimen 7R, four from specimen lR,8 and two from
an unused specimen) resulted in an average density of
0.00111 kg/m®, which is different by only 1% from the den-
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sity assumed here. Since sound speed in calcified tissue has
been empirically shown to be directly related to density,“’44
this small change in density suggests that the acoustic prop-
erties of the calcified cartilage in our specimens is close to
that for normal cartilage.

The computations reported here model the chest wall as
a fluid of variable sound speed, density, and compressibility.
This model implicitly neglects shear wave propagation. The
neglect of shear waves in soft tissues is believed to be justi-
fied because the absorption of shear waves in soft tissues is
much greater than absorption of longitudinal waves.**¢ In
calcified tissues, however, significant shear waves are known
to be generated.‘”’48 In the current scattering configuration,
some shear waves are likely generated wherever the rib sur-
face is far from parallel to the wavefront. However, since
shear wave absorption has been found to be somewhat larger
than longitudinal wave absorption for ultrasonic propagation
in bone,* the significance of shear-wave propagation within
bone on transmitted ultrasonic wavefronts is questionable.
For this reason, omission of nonlongitudinal waves in the
present study, as in another computational study of ultrasonic
scattering from bone,49 is believed to be justified; however,
further study would be required to confirm this assumption.

The absence of frequency-dependent absorption is a pos-
sible source of error in the present estimates of total tissue
attenuation, energy level fluctuations, and waveform distor-
tion. However, since absorption in tissue increases approxi-
mately linearly with frequency, lower absorption for fre-
quency components below the pulse center frequency would
nearly cancel higher absorption for frequency components
above the center frequency, so that the average absorption
incurred by a wideband pulse should still be computed with
fair accuracy. For this reason, the absence of frequency-
dependent absorption in the calculations reported here is not
considered to be a significant source of error in the computed
attenuation or energy level fluctuation curves. Still, the in-
clusion of frequency-dependent absorption would result in
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additional waveform distortion effects. The lack of this effect
is a likely reason for the lower waveform distortion (higher
waveform similarity factors) obtained from simulations as
compared to measurements. However, the absence of
frequency-dependent absorption effects allowed frequency-
dependent scattering effects to be clearly quantified sepa-
rately from absorption effects.

Although the simulations were planned to match the
measurements of Ref. 8 closely, a number of differences re-
main. The most important of these, as discussed in Ref. 10, is
that the simulations were performed using a two-dimensional
tissue model while the measurements were inherently three-
dimensional. Other differences include details of the source
waveform and wavefront shape, variations in the specimen
orientations and the regions interrogated, and variations in
the distance between the specimen and the real or simulated
receiving aperture. All of these differences could contribute
to discrepancies between measurements and simulations.

In general, most of the simplifying assumptions in the
present tissue model are likely to result in underestimation of
wavefront distortion produced by the human chest wall. The
incorporation of tissue microstructure, spatially-dependent
acoustic properties for each tissue type, shear wave propaga-
tion in bone and cartilage, three-dimensional propagation,
and frequency-dependent absorption could all result in
greater spatial and temporal variations in the propagating
acoustic fields, so that these features could produce simu-
Jated distortion with characteristics closer to measurements.
For this reason, distortion statistics computed using the
present tissue model should be interpreted as lower limits for
the statistics of distortion occurring in real chest wall tissue.

Additionally, some of the discrepancy between simu-
lated and measured distortion may be explained by the non-
uniform characteristics of the receiving transducer employed
in the measurements.? The water-path measurements re-
ported in Ref. 8 show arrival time fluctuations (mean 2.21
ns) and energy level fluctuations (mean 0.36 dB); although
small, these fluctuations are comparable to the difference be-
tween the average measured and simulated fluctuations.
Thus, compensation for arrival time and energy level fluc-
tuations due to transducer irregularities could reduce mea-
sured distortion to levels closer to the simulations. Also, the
waveform similarity factor for water path measurements was
0.991,% which indicates greater waveform distortion than the
average value of 0.995 computed here for soft tissue paths.
Thus, compensation of the measured data for transducer
impulse-response variations could raise the measured wave-
form similarity factor to a value in closer agreement with
simulations.

Previous experimental measurements of wavefront dis-
tortion caused by the human chest wall® have suggested that
distortion caused by chest wall soft tissues is less severe than
that caused by the human abdominal wall.!'38 This differ-
ence has been observed to occur even though average speci-
men thicknesses were comparable in chest wall® and abdomi-
nal wall'®® measurements. The present results provide
support for these results; arrival time and energy level dis-
tortion by the chest wall was found here to be smaller than
that produced by the abdominal wall in previous simulation
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studies.!®!2 For the simulations, this difference may be par-
tially explained by the fact that the chest wall specimens
employed here are thinner on average (mean thickness 17.5
mm) than the abdominal wall cross sections employed in
Refs. 10 and 12 (mean thickness 26.7 mm). Another possible
partial explanation is that the pulse center frequency em-
ployed in abdominal wall measurements and simulations was
3.75 MHz, significantly higher than the center frequency of
2.3 MHz for the chest wall measurements and simulations.
Differences in pulse frequency and specimen thickness may
explain the discrepancy in energy level distortion between
the abdominal wall and chest wall, but do not fully explain
the discrepancy in arrival time distortion results. For in-
stance, the mean arrival time and energy level fluctuations
per unit length are 1.02 ns/mm and 0.083 dB/mm for the
present study vs 1.96 ns/mm and 0.105 dB/mm for the ab-
dominal wall cross sections of Ref. 10 and 12. Arrival time
distortion was shown here to increase only subtly with in-
creasing pulse frequency, so that this discrepancy in arrival
time fluctuations is not fully explained by pulse frequency
differences. However, energy level fluctuations increase
markedly with frequency for chest wall tissue. Thus, for
equal ultrasonic pulse frequencies, chest wall tissue should
cause energy level distortion per unit length comparable to
that caused by abdominal wall tissue.

It was suggested in Ref. 8 that chest wall morphology
may differ from abdominal morphology in a manner that
results in smaller ultrasonic wavefront distortion. The cross
sections employed here can be compared with those em-
ployed in Refs. 10 and 12 to evaluate the importance of
morphological differences between chest wall and abdominal
wall tissue. One difference between the two groups of cross
sections is the nature of the subcutaneous fat layers. The
abdominal wall cross sections generally contain thicker fat
layers, containing many more lobular structures than the
chest wall cross sections. Since the high contrast between
septa and fat causes substantial ultrasonic scattering,'®'? this

" morphological difference is likely to result in lower overall

energy level and waveform distortion for chest wall tissue
(although, as discussed above, the energy level distortion per
unit propagation length should be comparable). Also, the ab-
dominal wall and chest wall cross sections have a markedly
different structure within the muscle layers that occur below
the subcutaneous fat. The abdominal wall cross sections have
many large-scale features due to aponeuroses (interfaces be-
tween muscle groups, composed of connective tissue and fat)
and large fatty regions. These large-scale features cause large
wavefront fluctuations that are associated with large rms ar-
rival time fluctuations.!®'? In contrast, muscle layers of the
chest wall cross sections considered here contain primarily
smaller-scale structures associated with small islands of in-
terlaced fatty tissue. This morphological difference may re-
sult in lower large-scale arrival time fluctuations but signifi-
cant energy level fluctuations associated with scattering,
consistent with the differences between distortion caused by
soft tissues in the abdominal wall and the chest wall.

The present results for the frequency dependence of dis-
tortion provide further insight into the importance of scatter-
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ing effects relative to large-scale structure in wavefront dis-
tortion caused by soft tissues. If wavefront distortion in the
chest wall were caused only by large-scale tissue structures,
the distortion would be roughly independent of frequency,
since propagation effects are independent of frequency in the
geometric acoustics limit. However, distortion caused by
scattering effects should increase with the pulse frequency
for inhomogeneities of size comparable to the wavelength.
Previous simulation and experimental studies'®~'? on distor-
tion caused by the human abdominal wall have suggested
that energy level fluctuations and waveform distortion are
generally associated with scattering effects, while arrival
time fluctuations are predominantly caused by large-scale
path length differences. The present results, while consistent
with those conclusions, indicate that scattering plays a role in
all types of distortion considered here. Since energy level
fluctuations and waveform similarity factors exhibit more
dramatic increases in distortion with increasing pulse fre-
quency, the present results suggest that scattering is of pri-
mary importance in causing energy level and waveform dis-
tortion and of secondary importance in causing arrival time
distortion.

These results can be employed to evaluate the potential
of various approaches to improve echocardiographic imag-
ing. Available acoustic windows for transthoracic imaging
are severely limited by the presence of the ribs, so that image
quality cannot be significantly improved by an increase of
aperture size. The present results also indicate that use of
higher-frequency probes may provide less benefit than ex-
pected because of frequency-dependent scattering in the
chest wall.

For these reasons, aberration correction methods are po-
tentially important in transthoracic echocardiography, par-
ticularly for higher-frequency imaging. The frequency-
dependent distortion results reported here suggest that
distortion models employing single phase screens may be of
some benefit for aberration correction in echocardiography
through soft tissue paths. The relatively weak dependence of
arrival time fluctuations on pulse frequency suggests that a
large portion of arrival time variations are caused by tissue
structures too large to cause significant frequency-dependent
scattering effects. Similar conclusions regarding the impor-
tance of large-scale structures to arrival time fluctuations
have also been drawn from results presented in Refs. 10 and
12.

Still, the present results, like those from earlier
studies, "2 suggest that single phase screens will not pro-
vide complete correction for distortion caused by soft tissues.
In particular, methods employing single phase screens will
not completely remove distortion caused by scattering. The
sharp increase of amplitude and waveform distortion with
frequency, as well as the moderate increase of arrival time
distortion with frequency, indicate that scattering effects be-
come much more important to ultrasonic aberration as imag-
ing frequencies increase. Furthermore, phase screen models
do not inherently account for distortion caused by rib struc-
tures, shown here to produce diffraction, reflection, and scat-
tering. Thus, any attempted correction using only phase
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screen models is likely to provide little improvement in the
presence of strong rib-induced effects.

Other correction models that incorporate rib structures
may provide greater image improvements for the distortions
most important to echocardiography. Processing wavefronts
with techniques such as angular spectrum filtering can re-
move some spurious arrivals,>® although such computations
may be difficult to incorporate into a general correction al-
gorithm. Other possible methods include those incorporating
models of tissue structure. Models incorporating ray
acoustics’ may provide improvement, but implicitly neglect
diffraction and scattering effects, so that aberration correc-
tion would be incomplete, particularly for small intercostal
spaces. A more complete aberration correction method could
employ synthetic focusing using full-wave numerical com-
putation of acoustic fields within sufficiently accurate models
of tissue structure. This method has been implemented,
within the context of a quantitative frequency-domain in-
verse scattering method, in Ref. 51. However, the results
presented here indicate that distortion caused by soft tissue
and rib structures varies widely based on morphological
variations between (and within) individuals. Thus, for any
general correction method employing models of tissue struc-
ture, separate models of tissue structure must be constructed
for each region of interest.

V. CONCLUSIONS

A computational study of ultrasonic propagation through
the chest wall, including tissue-dependent absorption as well
as detailed anatomical cross sections, has been presented. For
soft tissue paths, computational results for arrival time dis-
tortion, energy level distortion, and correlation lengths of
these distortions are comparable to those reported in previ-
ous chest wall measurements. Both simulations and measure-
ments indicate that arrival time distortion and energy level
distortion caused by soft tissues in the human chest wall is
smaller than that caused by the human abdominal wall. Dif-
ferences in morphology between the abdominal wall and the
chest wall provide a probable explanation for this difference.

Distortion caused by rib structures is much more severe
than that caused by soft tissues. Reflections and diffraction
from rib structures complicate wavefronts that travel through
soft tissue paths adjacent to ribs and can cause arrival time
and energy level fluctuations much greater than those in-
duced by soft tissue structures. Wavefronts propagating di-
rectly through rib structures are attenuated by both internal
absorption and reflection at interfaces between bone, carti-
lage, and soft tissue. Internal scattering within rib structures
causes distortion phenomena that include severe waveform
and energy level distortion, additional attenuation, and low-
ering of the effective frequency for the transmitted pulse.
The strong dependence of distortion on the morphological
details of rib structures presents a major challenge for aber-
ration correction in echocardiography.

Simulation of propagation through soft tissue paths us-
ing three different pulse frequencies has indicated that the
distortion types investigated here have different frequency
dependence. Arrival time fluctuations increase subtly with
frequency, while energy level and waveform distortion in-
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crease greatly. Thus, a substantial portion of arrival time
fluctuations produced by the chest wall may be explained by
large-scale tissue variations, but some arrival time distortion
and most energy level and waveform distortion apparently
result from scattering. Thus, correction of wavefront distor-
tion caused by soft tissues should become both more impor-
tant and more challenging as pulse frequencies employed in
imaging systems are increased.
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Abstract—Large-scale simulation of ultrasonic pulse
propagation in inhomogeneous tissue is important for the
study of ultrasound-tissue interaction as well as for de-
velopment of new imaging methods. Typical scales of in-
terest span hundreds of wavelengths; most current two-
dimensional methods, such as finite-difference and finite-
element methods, are unable to compute propagation on
this scale with the efficiency needed for imaging studies.
Furthermore, for most available methods of simulating ul-
trasonic propagation, large-scale, three-dimensional compu-
tations of ultrasonic scattering are infeasible. Some of these
difficulties have been overcome by previous pseudospec-
tral and k-space methods, which allow substantial portions
of the necessary computations to be executed using fast
Fourier transforms. This paper presents a simplified deriva-
tion of the k-space method for a medium of variable sound
-speed and density; the derivation clearly shows the relation-
ship of this k-space method to both past k-space methods
and pseudospectral methods. In the present method, the
spatial differential equations are solved by a simple Fourier
transform method, and temporal iteration is performed us-
ing a k-t space propagator. The temporal iteration proce-
dure is shown to be exact for homogeneous media, uncon-
ditionally stable for “slow” (c(x) < co) media, and highly
accurate for general weakly scattering media. The applica-
bility of the k-space method to large-scale soft tissue mod-
eling is shown by simulating two-dimensional propagation
of an incident plane wave through several tissue-mimicking
cylinders as well as a model chest wall cross section. A three-
dimensional implementation of the k-space method is also
employed for the example problem of propagation through
a tissue-mimicking sphere. Numerical results indicate that
the k-space method is accurate for large-scale soft tissue
computations with much greater efficiency than that of an
analogous leapfrog pseudospectral method or a 2-4 finite
difference time-domain method. However, numerical results
also indicate that the k-space method is less accurate than
the finite-difference method for a high contrast scatterer
with bone-like properties, although qualitative results can
still be obtained by the k-space method with high efficiency.
Possible extensions to the method, including representa-
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tion of absorption effects, absorbing boundary conditions,
elastic-wave propagation, and acoustic nonlinearity, are dis-
cussed.

I. INTRODUCTION

OMPUTATION of a scattered acoustic field, given an in-
C cident wavefield and complete specification of an in-
homogeneous medium, is known as the forward scatter-
ing problem. Numerical solution of the forward scattering
problem is central to many aspects of ultrasonic imaging,
including inverse scattering methods, numerical studies of
wavefront distortion, and development of new methods for
adaptive focusing. Most methods for numerical solution of
the forward scattering problem fall into one of three cat-
egories: finite difference methods, finite element methods,
and spectral methods.

Finite difference and finite element methods are known
as local because the wave propagation equations of inter-
est are solved at each point based only on conditions at
nearby points. In contrast, spectral methods, such as the
k-space method [1]-[7] and the pseudospectral approach
[8]-[14], are called global because information from the
entire wavefield is employed to solve the wave propagation
equations at each point. In part because of their global
nature, spectral methods can be more accurate than local
methods—for instance, pseudospectral methods applied to
periodic problems have been shown to be equivalent to fi-
nite difference methods of infinite order [12].

Spectral methods also have considerable advantages for
large-scale forward solvers because the required storage
and the number of operations per iteration can be dra-
matically reduced compared with local methods. This ad-
vantage occurs principally because spectral methods can
allow computations to be performed on coarser grids while
maintaining accuracy. For example, finite element methods
and high-order finite difference methods typically require
grid spacings on the order of 10 points per minimum wave-
length; second-order finite difference methods can require
20 points per wavelength [10]. Spectral methods, in theory,
require only two points per wavelength (spatial Nyquist
sampling), although for computations of propagation in
inhomogeneous media, greater accuracy is achieved with
grid spacings on the order of four points per wavelength
0], [11], (14].

This report addresses the problem of large-scale ultra-
sonic wave propagation in biological media, such as human
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tissue. For problems of interest in medical ultrasound, do-
main sizes can often exceed the capabilities of conventional
forward solvers. For example, one computation of realis-
tic scale would be the simulated propagation of a pulse
with an upper bandwidth limit of 5 MHz in a volume
of dimensions 30 mm on each side and a nominal sound
speed of 1.5 mm/us, so that the minimum wavelength is
0.3 mm. For this computation, a second-order finite differ-
ence method (using 20 points per wavelength) would re-
quire a three-dimensional grid containing 8 x 10° nodes; a
finite element or fourth-order finite difference method (us-
ing 10 points per wavelength) would require 1 x 10° nodes;
and a spectral method (using four points per wavelength)
would require 6.4 x 107 nodes. Because a grid of 6.4 x 107
single precision complex numbers requires storage of 512
megabytes, only spectral methods are feasible for realistic
three-dimensional computations on present-day comput-
ers that typically have a maximum random-access memory
storage of several gigabytes. The efficiency provided by fast
Fourier transform implementations of spectral algorithms
is a further reason why spectral methods are a practical ap-
proach to large-scale and three-dimensional computations
of ultrasonic wave propagation.

Previous spectral approaches have included pseudospec-
tral methods, in which spatial derivatives are evaluated
globally by Fourier transformation and wavefields are ad-
vanced in time using various numerical integration tech-
niques [8]—[14]. This method has provided high accuracy
in many cases; however, temporal iteration techniques that
provide good accuracy for large-scale models typically re-
quire small time steps, significant additional computations,
or storage of wavefields from additional time steps [13],
so that the efficiency advantages of the pseudospectral
approach are less than might first be expected. The k-
space family of methods [1]-[7] can overcome this problem
by providing explicit temporal propagators related to the
Green’s function for wave propagation in k-t (spatial fre-
quency and time) space.

The present paper presents a simplified derivation of the
k-space method using a differential representation of the
wave propagation equations. The spatial part of the wave
propagation equations is solved by Fourier transforma-
tion in a manner analogous to past pseudospectral meth-
ods; this derivation is shown to be theoretically equivalent
to previous integral formulations of the k-space method.
Temporal iteration is performed using a k-t space prop-
agator [2], which is shown to be exact for homogeneous
media and, in general, provides much greater accuracy
and stability than leapfrog iteration (in which temporal
derivatives are evaluated using second-order accurate finite
differences) without significant additional computation or
storage requirements. Thus, the k-space method provides
spatial and temporal accuracy ideal for large-scale models
of acoustic propagation in weak scattering media.

Subsequently, a derivation of the k-space method is
presented for propagation in fluid media with spatially
dependent sound speed and density. For several canoni-
cal forward problems relevant to ultrasonic imaging, the

t
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accuracy and efficiency of the k-space method is com-
pared with a pseudospectral method employing leapfrog
iteration and also with a 2-4 finite difference time-domain
method. The k-space and finite difference methods are also
used in an example computation for a large-scale, two-
dimensional tissue model. Another example computation
illustrates the efficiency of the k-space method for three-
dimensional scattering computations. Possible extensions
of the present k-space method, including multiple relax-
ation effects for absorption, absorbing boundary condi-
tions, inclusion of elastic and nonlinear acoustic effects,
and parallelization, are discussed.

1I. THEORY

A. Derivation of the k-Space Method

The k-space method for solving the acoustic scattering
problem is briefly derived subsequently. The derivation is
simpler than those previously published and also provides
some new insight regarding the remarkable accuracy and
stability characteristics of the k-space method.

The method is applicable to large-scale modeling of lin-
ear ultrasonic propagation in soft tissues, which are mod-
eled here as fluid media with spatially dependent sound
speed and density. Although the k-space method described
subsequently can be extended to include absorption effects,
acoustic nonlinearity, and shear-wave propagation, these
effects are neglected in this derivation for simplicity.

For a fluid medium with spatially dependent sound
speed and density, the linear acoustic wave equation is [15]

1 8%p(x,t)

(9 <60 =0

at? 1)

AL o) -
Ve e

where p(x, 1) is the acoustic perturbation in pressure, p(x)
is the spatially dependent density, and c(x) is the spatially
dependent sound speed.

By defining the normalized wavefield f(x,t) =
p(x,t)/+/p(x), as performed in a number of previous stud-
ies (e.g., [16], [17]), the first-order derivative term can be
eliminated from (1). Details of this step are given in [6].
When the wavefield is also split into incident and scat-
tered parts, such that f(x,t) = fi(x,t) + fs(x,t), a wave
equation for the scattered field can be written

8u(x,t)\ .
ot @)

1 8 fi(x,1)

2 _ _ 1/
V2 fs(x,t) 2 o2 & q(x,t) +

The terms on the right-hand side are effective sources as-
sociated with density and sound speed variations, which
are defined as

ax ) = 3 VeV Ve fxt) @)
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and

v(x,t) = /c(i))i’

- 1\ f(x,%). (4)

The incident wavefield f;(x,t) is required to satisfy the
usual wave equation without any source terms [i.e., the
D’Alembertian operator from the left-hand side of (2), ap-
plied to f;(x,t), is equal to zero]. Thus, the total wavefield
f(x,t) also satisfies (2) identically, so that the numerical
algorithm developed for the scattered field is equally ap-
plicable to the total field.

With the additional definition of an auxiliary field
w(x,t) = fs(x,t) +v(x,t), (2) can be rewritten in k-space
as the coupled set of equations

PW) _ (e [V (ke 2) — Wk, 6] - QI 1),
ot (5)
Vik,t)=F [ /1 - i);)—z—\ [fi(x,t) + w(x, t)]-I ,
(6)
Qk,t) = g F r\/@ v %\ [fi(x,t)
+ w(x,t) — v(x, t)]-| (7)

where F denotes spatial Fourier transformation, and cap-
ital letters indicate spatially Fourier transformed quanti-
ties.

For each point in k-space, (5) represents an indepen-
dent ordinary differential equation equivalent to the stan-
dard simple harmonic oscillator equation with the source
terms (cok)?V and —Q. This ordinary differential equa-
tion can be discretized in several ways. For instance, a
second-order accurate finite difference representation of
the second-order time derivative allows (5) to be written
as

Wi(k,t+ At) - 2W(k,t) + W(k,t — At) =
Qk,t)]
(cok)?

where At is the time step. This is known as leapfrog it-
eration; use of (8) in the current method is analogous to
commonly used pseudospectral approaches [13], [14]. (Al-
though increased accuracy can be achieved by higher order
methods such as fourth-order Adams-Bashforth or Adams-
Moulton iteration, these methods have the disadvantage of
requiring storage of the entire computational grid for ad-
ditional time steps [12}, [13]).

A more accurate form of the temporal iterator is ob-
tained using a nonstandard finite difference approach. For
the homogeneous simple harmonic oscillator equation, an
exact discretization is known [18}. (That is, for any tempo-
ral and spatial step sizes, the discrete difference equations
yield exactly the same solutions as the continuous differen-
tial equations. A similar exact discretization for the linear

(cokAt)? [V(k, t) = Wik,t) — (8)
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part of the Korteweg-de Vries equation was presented in
[19].) Use of this nonstandard discretization leads to the
following discrete form of (5):

W(k,t + At) — 2W (k, t) + W(k,t — At) =

Rk, ?)]
(cok)?

asin? | 5"';ﬁ\ Ve, ) — Wi, t) - )

Because the discretization employed is exact for the sim-
ple harmonic oscillator equation, (9) is exactly equivalent
to the differential equation, (5), for the case of a homo-
geneous medium [i.e., V(k,t) = Q(k,t) = 0]. Numerical
results shown subsequently indicate that high accuracy
is also achieved for weak scattering media, in which case
Vik,t) < W(k,t) and Q(k,t) < W(k,t). The present
discretization method is equivalent to that employed by
Bojarski (the form given in [2] follows after some trigono-
metric manipulation); however, previous derivations of this
method have been based on approximations to an integral
representation of (5) [2], [6]. It may also be noted that (8)
and (9) are equivalent in the limit of small At. However,
results shown subsequently indicate that, for weak scat-
tering media, use of the k-t propagator (9) provides much
greater accuracy for larger time steps.

In numerical implementation of the k-space algorithm,
(5) is used to advance the auxiliary field W(k,t) in time.
Eq. (6) and (7) represent updates of the effective scattering
sources v and ¢ and their spatial Fourier transformation
to yield the k-space effective sources V and ). Notable is
that the effective source v is directly proportional to the
square of the sound speed variation of the medium, and the
effective source g is directly proportional to the Laplacian
of 1/+/p(x). Thus, for a piecewise constant inhomogeneous
medium, v may be non-zero everywhere, but g is nonzero
(and singular) only on borders between regions.

The present k-space algorithm can now be summarized
as follows:

Step 1: set any initial conditions for w(x,t) and spa-
tially Fourier transform [by fast Fourier transform
(FFT)] to obtain initial conditions for W(k,t)

Step 2: define the incident wave f;(x,t) on the entire
grid (fi(x,t) can be identically zero)

Step 3: compute v(x,¢) and transform to obtain
V(k,1) (6)

Step 4: compute g¢(x,t} and transform to obtain
Qk, 1) (7)

Step 5: evaluate W(k,t + At) (9) and inverse trans-
form to obtain w(x,t + At)

Step 6: set t — t + At and go to step 2

This method requires three fast Fourier transform opera-
tions per time step (one each for steps 3, 4, and 5 of the
algorithm enumerated above).

Also notable is that the algorithm is directly appli-
cable to one-dimensional, two-dimensional, and three-
dimensional propagation. This is possible because the k-t
space Green’s function has an identical form for any num-
ber of spatial dimensions [2]. For example, to implement
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the present methods for two-dimensional computations,
the algorithm just outlined is simply employed using two-
dimensional Fourier transforms. The three-dimensional
version of the algorithm is formally identical but with
three-dimensional Fourier transforms.

To distinguish between the standard leapfrog iteration
method and the improved method used here, the following
nomenclature is used in the present paper. The algorithm
employing (9) is referred to as a k-space method, and the
corresponding algorithm employing (8) for temporal iter-
ation is referred to as a leapfrog pseudospectral method.
This nomenclature is used because the algorithm employ-
ing (9) is mathematically equivalent to an extended form of
Bojarski's k-space method [2] cast in terms of differential
equations rather than integral equations. The algorithm
employing (8) is referred to as pseudospectral because it
is mathematically equivalent to a conventional “method
of lines” pseudospectral algorithm with leapfrog iteration
[12]. [A conventional pseudospectral algorithm of this form
would employ the spatial inverse Fourier transform of (8)
for temporal iteration.]

B. Temporal and Spatial Sampling Criteria

To determine the usable range of spatial and temporal
sampling rates for the present k-space method, limits on
the stability and accuracy of the method can be evaluated
analytically.

The stability of the k-space and leapfrog pseudospec-
tral methods derived previously can be evaluated using
standard, linear von Neumann stability analysis [20]. Us-
ing this technique, the difference equations that comprise
(8) and (9) are applied to a test function

Wiest (k, nAt) = 9(k)" ¢y(k) (10)
where 4:(k) is a spatial-frequency domain eigenmode and
v(k) is a temporal amplification factor. If a difference
equation admits solutions with |9(k)| > 1 for any vec-
tor wavenumber k, errors may grow exponentially with
time, and the solution is thus unstable. If [9(k)| < 1 for
all wavenumbers, then the solution is numerically stable.
For simplicity, the present stability computation is per-
formed in the absence of density variations; the incident
wave f;{x,t) is assumed (without loss of generality) to be
-zero. To obtain limiting stability criteria, the worst case
sound speed inhomogeneity ¢(X) = cmax is also assumed.

Application of this technique to (8), which represents a
leapfrog pseudospectral approach, yields a quadratic equa-
tion for ¥(k). The resulting stability condition is

CmaxKmaxAt < 2 (11)
where Cpay is the maximum sound speed in the region of
computation; kna.e = 7/Ax is the maximum wavenum-
ber in the discrete Fourier transforms used to compute
W(k,t); and At and Ax, respectively, are the temporal
and spatial steps employed. Using the standard definition
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for a Courant-Friedrichs-Lewy (CFL) number [21], the sta-
bility condition
e At 2 c¢o

= —< -
CFL Az T T Cmax

(12)

is obtained for the leapfrog pseudospectral method repre-
sented by (8).

Application of the same analysis to the k-space iterator
of (9) yields the stability condition
T C;FL < %

4 Cmax

sin (13)
This condition has the remarkable result that, for media
with ¢{x) < ¢p everywhere, the linear numerical stability
of the k-space method is unconditional. However, for any
medium, an upper limit on the time step still arises from
the requirement of sampling at the Nyquist rate: that is,
the time step should be sufficiently small to allow two sam-
ples per period for the highest frequency component of the
computed field. Thus, the temporal sampling criterion can
be written

- Ar (14)

Cmax

1 T

Ats 2 fmax CinaxKmax
or simply CFL < ¢p/¢max. The stability criterion (13) is
met whenever the Nyquist sampling criterion (14) is met;
thus, the Nyquist sampling criterion is more restrictive.
For the spatial discretization, a Nyquist criterion based
on the maximum spatial frequency kpax = /A2 is met
for any step size Ax. However, the inhomogeneous medium
will be inaccurately represented (aliased) if its Fourier
transform has significant spatial-frequency components
beyond kpax. Aliasing is a particular problem when the
medium contains discontinuities, which correspond to infi-
nite spatial frequency content; removal of errors associated
with discontinuities is discussed in the following section.

C. Effects of Discontinuities

The Fourier transforms performed in the present k-
space algorithm can lead to numerical artifacts (related to
the Gibbs phenomenon) when the inhomogeneous medium
contains discontinuities in sound speed or density. To avoid
such artifacts, the scattering object can be spatially fil-
tered to smooth any discontinuities. That is, the spatially
dependent sound speed ¢(x) and density p(x) can be re-
placed by filtered functions of the form

uﬁlwrcd(x) = F—'I[U(k) ¢(k)]

in which the Fourier transform U(k) of the function (x)
is multiplied by a low-pass spatial frequency filter ¢(k).
The function U(k) should be represented as accurately as
possible; for example, exact Fourier transforms of simply
shaped inhomogeneities can be used when available. Subse-
quently, the exact Fourier transform of a two-dimensional
disk is employed for filtered representations of an infinite
cylinder.

(15)
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In the present study, the filter employed is the half-band
filter [22]

(1, E/kmax < 1/2

k p—rd
P10 = = 1/2), 1/2< ks <323
where
19 1 .
f0) = 3t 6 cos(mw@} — % cos(370) (17

and k is the magnitude of the spatial frequency vector k.

This filter defines a smoothly tapered window that
causes no attenuation of spatial frequencies below kyax/2
and drops to one-half amplitude (—6 dB) at the spatial
frequency kpax. Zero amplitude is reached at the spatial
frequency 3/2 kmax, which exceeds the spatial frequency
range of the discrete Fourier transforms employed in the
k-space algorithm, so that aliasing error is not eliminated
by the half-band filter. However, a strict bandlimiting filter
was found to cause excessive loss of high spatial frequency
components in the medium, so that scattering amplitude
near the backscatter direction was greatly reduced. The
half-band filter of (16) was found to greatly reduce Gibbs
phenomenon artifacts and maintain enough high spatial
frequency components of inhomogeneities to provide accu-
rate backscatter results.

For inhomogeneous media, exact Fourier transforms are
not generally available. However, artifacts associated with
discontinuities can still be removed by the methods given
previously. For example, a finely sampled representation
of the medium could be filtered using {15) and then deci-
mated to the desired spatial step size.

III. NUMERICAL METHODS

Numerical implementation of the k-space algorithm was
accomplished using the algorithm described previously.
The normalized incident wave f;(x,t) was defined as a
plane wave with Gaussian temporal shape:

fi(x,t) = p(x)~¥ sin(woT) e~ /(20%) (18)
where 7 is the retarded time 7 = ¢ — (z — xg)/co and @
is the initial central position of the wavefield. This inci-
dent wave was implicitly specified using initial conditions
(as for the incident plane wave in [23]) rather than explic-
itly updated at each time step. Boundary conditions were
implicitly periodic at each edge of the computational do-
main because of the inherent periodicity of the fast Fourier
transforms employed.

Wavefields were computed on two-dimensional grids
that were large enough to avoid influence of “wraparound”
error within the temporal window of interest. All k-space
computations were performed on square grids of size NV
by N. Prior to execution of the main computation loop,
the Laplacian occurring in (7) was evaluated using second-
order accurate, centered finite difference representations of
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the second derivative in each direction. Within the main
computational loop, all spatial derivatives were evaluated
by Fourier transformation, implemented using an FFT al-
gorithm [24]. For maximum FFT efficiency, grid sizes N
were chosen to be integers with prime factors no greater
than three.

To reduce any spatial anistropy associated with the
rectangular grid shape, the spatial frequency time-domain
wavefield Wk, + At} was windowed using the radially
symmetric window

¢(k) = H(kmax — k)

before inversion to yield w(x,t + At) (i.e., within step 5
in the algorithm enumerated previously). In (19), H is,
as before, the Heaviside step function, kpay is the maxi-
mum wavenumber magnitude (equal to #/Az because the
spatial frequency range sampled extends from —7/Ax to
7/ Ax in each direction), and k is the magnitude of the vec-
tor wavenumber k. In some cases, the medium properties
¢(x) and p(x) were also smoothed by windowing in the
spatial-frequency domain using (16) with a wavenumber
cutoff of kyax = 7/Az.

For comparison, wavefields were also computed using
a second-order in time, fourth-order in space finite dif-
ference method, described in [21], [23], [25]-[27]. As for
the k-space computations, the incident wave was specified
by a single initial condition rather than updated at each
time step. Periodic boundary conditions were applied on
all sides of the grid. Time steps were determined using a
CFL number of 0.25, which is a natural choice for this finite
difference method [26]. As in [23] and [28], computations
were performed at each time step only on portions of the
grid where the wavefields were nonzero; this reduces the
required computation time for the finite difference method
by about one-half.

To test the k-space and finite difference methods quan-
titatively, benchmark computations were performed us-
ing an exact series solution for the scattering of a plane
wave by a fluid cylinder [29]. The sampling rate and wave-
form shape were chosen to match the time-domain simu-
lation data for the case of interest. The pressure field was
then computed for each frequency component with relative
magnitude within 60 dB of the peak magnitude. Each sin-
gle frequency computation truncated the series at the term
with a relative contribution less than 10~12 times the sum
of all terms. The frequency-domain scattered fields were
then inverted by FFT to obtain numerically exact solu-
tions for the time-domain pressure fields at the simulated
measurement points. An exact time-domain solution for
scattering from a fluid sphere was also obtained using an
analogous approach.

Benchmark studies of accuracy were performed using
a cylinder with radius 2.0 mm and acoustic properties of
human fat and a background medium with acoustic prop-
erties of water at body temperature. Rationale for use of
these values is discussed in [23]. The cylinder had a sound
speed of 1.478 mm/us and a density of 0.950 g/cm?; the
background medium had a sound speed of 1.524 mm/us

(19)
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Fig. 1. Time history of total acoustic pressure computed by the k-space method for a cylinder with a 2.0-mm radius and fat-mimicking
acoustic properties. The cylinder is sketched as a light gray region. The first panel shows the wavefield impinging on the cylinder at time
t = 0.98 us, and subsequent panels (progressing from left to right and top to bottom) show the total wavefield at intervals of 0.98 us. The
acoustic pressure is plotted in all panels using a bipolar logarithmic scale with a 60 dB dynamic range.

and a density of 0.993 g/cm3. The scattering geometry is
as shown in Fig. 1. The incident pulse was a plane wave
with Gaussian temporal characteristics, a temporal Gaus-
sian parameter o = 0.25 us, and a central starting position
of z = —4.5 mm at time zero. For this pulse, a nominal
maximum frequency is 4.43 MHz, corresponding to the
spectral point 40 dB down from the center frequency (for
the benchmark problem, this frequency corresponds to a

minimum wavelength of 0.33 mm). The k-space, leapfrog
pseudospectral, finite difference, and exact methods de-
scribed previously were used to compute time histories of
the total pressure field at 128 equally spaced “measure-
ment” points spanning a circle of radius 2.5 mm concen-
tric to the cylinder. The pressure was interpolated using a
two-dimensional low-pass interpolation filter implemented
by the formula [30] [(20), see above], where Ij is the zero-
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order modified Bessel function of the first kind, and 3 is
the Kaiser window coefficient, taken here to be 7.0. This
choice of 3 provides a filter with flat response up to about
0.6 kyax and sidelobes at the —70 dB level.

The domain size for each k-space, pseudospectral, and
finite difference computation employing this cylinder was
18 x 18 mm?.

Further studies of accuracy were performed using a
cylinder of radius 10 mm. Other parameters were as de-
scribed previously for the small problem, except that the
radius of the measurement circle was 12.5 mm and the
starting position of the wavefront was z = —14.5 mm. The
k-space method was employed to compute two cases corre-
sponding to unsmoothed and smoothed contrast functions,
using a spatial step of four points per minimum wavelength
and a CFL number of 0.5. In each k-space computation for
this cylinder, the domain size employed was 72 x 72 mm?2.

“The finite difference method was employed to compute a

single case using a spatial step of 14 points per minimum
wavelength, a CFL number of 0.25, and a domain size of
72 x 60 mm.

To evaluate the relative accuracy and efficiency of the
k-space and finite difference methods for a high contrast
scatterer, computations were also performed using a cylin-
der of radius 2.0 mm with the sound speed and density of
human bone. The values employed were a sound speed of
3.54 mm/us and a density of 1.99 g/cm® as in [28]. The
incident pulse, receiver, and computational domain char-
acteristics were identical to those for the 2.0 mm “fat”

-cylinder case described previously.

In all of the previously mentioned accuracy tests, a
quantitative measure of the accuracy was obtained using
the time-domain L? error of each numerically computed
pressure field paum (X, t) versus the corresponding exact se-
ries solution Pexact(x.t). This quantity has the definition

€= “pnum(xra t) - Pexact(xr‘yt)”

Hpexact (X1~, t)” (21)

~where [|p(x,,t)|| is the L? norm [31] of a matrix composed
of the time-domain signal p(x,t) for all receiver points x;
and all time samples computed. Eq. (21) represents an ac-
curacy criterion that is much stricter than more general
criteria, such as comparison of the rms waveform ampli-
tude or the amplitude and phase at the center frequency.
To achieve a low L2 error by the definition of (21), both the
-waveform amplitude and phase must be accurately com-
puted for all significant frequency components of the field.
The use of the present k-space method in a more real-
istic two-dimensional simulation of ultrasonic propagation
was also tested. For this purpose, a cross-sectional tissue
map of the human chest wall [28] was used as the simu-
lated medium. A pulse center frequency of 3.0 MHz was
employed together with a temporal Gaussian parameter of
0.3127 ps; these parameters correspond to the highest cen-
ter frequency employed in the simulation study reported in
[28]. The corresponding nominal minimum wavelength is
0.34 mm. The k-space computation employed four points
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per minimum wavelength, a CFL number of 0.5, and a grid
size of 54.9 x 54.9 mm?. The finite difference computation
employed 14 points per minimum wavelength, a CFL num-
ber of 0.25, and a grid size of 38.5 x 29.7 mm?. As in [23]
and [28], periodic boundary conditions were applied on the
sides perpendicular to the wavefront; first-order radiation
boundary conditions [23] were applied on the sides parallel
to the wavefront.

Finally, to illustrate the efficiency and accuracy of the
present k-space method for three-dimensional computa-
tions, scattering from a penetrable sphere with acoustic
properties of human muscle (speed, 1.547 mm/pus; density,
1.090 g/cm? [23]) was computed. The sphere radius was
1.5 mm; time-domain pressure waveforms were recorded
at 128 equally spaced measurement points on the sphere
surface (in the ¢ = 0 plane). The computation employed
an incident pulse identical to that for the cylinder simu-
lations described previously, a spatial step of four points
per minimum wavelength and a CFL number of 0.5. The
total pressure wavefield was computed for a time dura-
tion of 7.3 us on a three-dimensional grid of dimensions
10.66 x 10.66 x 10.66 mm3. The accuracy of this computa-
tion was assessed by evaluating the L? error between the
k-space and exact solutions using (21).

IV. NUMERICAL RESULTS

An example k-space computation, performed using the
2.0-mm cylinder with acoustic properties of human fat,

is illustrated in Fig. 1. The cylinder is also sketched in

each panel. For the computation shown, smoothed sound
speed and density functions were obtained by filtering the
analytic spatial Fourier transform of the cylinder using
(16). The time history of the total wavefield is shown as
computed by the k-space method for a spatial step size of
four points per minimum wavelength and a CFL number of
0.5. Details visible include a scattered wave from the edge
nearest the initial wavefront (c), weak focusing near the
trailing edge of the cylinder (e}, scattering from the trailing
edge [(f)—(i)], and low level multiple scattering {(g)-(h)].

Results of accuracy benchmarks for the k-space and
leapfrog pseudospectral methods described previously are
shown in Fig. 2. Each of these computations was made
using the 2.0-mm cylinder described previously and a spa-
tial step size of four points per maximum wavelength. The
results show that the k-space method employing the k-
t space propagator of (9) provides much higher accuracy
than the pseudospectral method employing the leapfrog
propagator of (8). The two methods provide equivalent re-
sults for very small time steps (CFL numbers less than
about 0.1), but the k-space method maintains its highest
accuracy up to a CFL number of about 0.4. In contrast,
the pseudospectral method rapidly increases in error for
CFL numbers above 0.1.

Error results for the pseudospectral computations
shown in Fig. 2 are not given for CFL numbers above
0.6 because the computation was unstable for higher CFL
numbers i.e., computed fields incurred spurious exponen-
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Fig. 2. Time-domain comparison of accuracy for the k-space and
leapfrog pseudospectral methods as a function of Courant-Friedrichs-
Lewy (CFL) number. Each test used the “fat” cylinder (2.0-mm ra-
dius) and a spatial step size of four points per minimum wavelength.

tial growth, resulting in numerical overflow. This obser-
vation of instability is consistent with the linear stability
limit of 0.6366 given by (12) for this case. The k-space
method did not incur any numerical instability for the
range of CFL numbers investigated, so that the method
is observed to be unconditionally stable as predicted for
¢(x) < co. However, the error of this method grows as
the CFL number approaches and exceeds unity, consistent
with the Nyquist sampling criterion given by (14).

Pseudospectral methods employing higher order time
integration achieve higher accuracy than the leapfrog it-
eration used as a comparison here. However, tests of the
present k-space method and a pseudospectral method em-
ploying fourth-order Adams-Bashforth time integration
have shown trends similar to that seen in Fig. 2 [32].
Specifically, for weak scattering media, the k-space method
yields similar accuracy for time steps two to three times
larger than those required by the higher order pseudospec-
tral method described in [13].

The relative accuracy of the k-space method and the
2-4 finite difference method are compared in Fig. 3 as a
function of the spatial step size. For these computations,
the CFL number of the k-space computations was held
constant at 0.5, consistent with the CFL-accuracy rela-
tionship shown in Fig. 2; the CFL number of the finite
difference computations was held at 0.25 [26]. Both meth-
ods achieve high accuracy for finer grid spacings; however,
the k-space method achieves higher accuracy for much
larger spatial step sizes. The L? error drops below 0.05
for k-space computations, employing only three points per
minimum wavelength; achievement of the same accuracy
criterion requires 14 points per minimum wavelength for
the finite difference computations. This difference suggests
that storage requirements for k-space computations can be
much smaller than those for finite difference computations
of comparable accuracy, on the order of 12 times smaller
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Fig. 3. Time-domain comparison of accuracy for the k-space and 2-4
finite difference time-domain methods as a function of the spatial
step size in points per minimum wavelength (PPW). Each test used
the “fat” cylinder (2.0-mm radius). Courant-Friedrichs-Lewy (CFL)
numbers were 0.5 for the k-space method and 0.25 for the finite
difference time-domain method.

for two-dimensional computations and 43 times smaller for
three-dimensional computations.

Visual comparison of simulated waveforms for the 2.0-
mm cylinder is shown in Fig. 4. Waveforms in this fig-
ure are those computed using the k-space (four points per
minimum wavelength; CFL number, 0.5; both unsmoothed
and smoothed contrast functions), finite difference time-
domain (14 points per minimum wavelength; CFL num-
ber, 0.25), and exact methods. The k-space solution for
the unsmoothed cylinder shows a small time-domain L2
error (0.0243) but also exhibits spurious waves (nearly
60 dB down from the peak pressure amplitude) between
the two main arrivals. These spurious waves are removed
by use of the k-space method with smoothed medium pa-
rameters [i.e., p(x) and ¢(x) smoothed using (16) with
kmax = m/Ax]; the L? error is decreased to 0.0214 by this
smoothing. The finite difference result bears a strong qual-
itative resemblance to the exact solution, but the larger
L? error (0.0454) indicates that phase errors have been
introduced by the dispersion inherent to the finite differ-
ence method. Computation times [33] were 2.31 min for
the k-space method and 1.55 h for the finite difference
method, so that the k-space method yields greater accu-
racy at much less computational cost.

Waveforms for the 10-mm cylinder are shown in Fig. 5
in a format analogous to that of Fig. 4. These results indi-
cate that, as for the smaller cylinder, smoothing of the con-
trast functions produces a reduction in spurious low ampli-
tude waves. For this problem, unlike the 2.0-mm cylinder
discussed previously, this smoothing slightly decreases the
overall accuracy. (The time-domain L? error is 0.1292 for
the smoothed case vs. 0.1288 for the unsmoothed case.)
The finite difference solution, using 14 points per wave-
length and a CFL number of 0.25, requires much greater
storage and computational time and produces waveforms
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Fig. 4. Computed waveforms for the “fat” cylinder at a radius of 2.5 mm for a cylinder of radius 2.0 mm and a pulse center frequency of
2.5 MHz. The acoustic pressure is shown on a bipolar logarithmic scale with 60 dB dynamic range. The horizontal range of each plot is 360
degrees, covering the entire measurement circle starting with angle 0 (forward propagation). The vertical range of each panel corresponds
to a temporal duration of 9 us, with t = 0 at the top of each plot. a) Unsmoothed object: k-space solution with four points per minimum
wavelength, L2 error = 0.0243; b) smoothed object: k-space solution with four points per minimum wavelength, L? error = 0.0214; c) finite-
difference solution with 14 points per minimum wavelength, L? error = 0.0454; and d) exact solution.

with poorer accuracy (an L? error of 0.1794) than the k-
space method.

Results for the 2-mm “bone” cylinder are shown in
Fig. 6. In this case, the k-space method using a CFL num-
ber of 0.5 exhibited numerical instability. This instability
is expected because this CFL number exceeds the limit
of 0.2833 set by (13). To obtain an appropriate temporal
sampling rate, the time step was reduced in proportion to
the increase in cpax, resulting in a CFL number of 0.2153.
Required computation time for the k-space method was
5.34 min!; the time-domain L? error was 0.3061 for the
unsmoothed case and 0.2687 for the smoothed case.

The finite difference method, employing 14 points per
wavelength and a CFL number of 0.1076 (also changed in
proportion to ¢max), achieved an L? error of 0.0350 in a
computation time of 3.99 h'. This result indicates that fi-
nite difference methods can be much more accurate than k-
space methods for scattering problems involving very high
contrast inhomogeneities such as bone within soft tissue.
However, the k-space solution, as seen in Fig. 6, still shows
good qualitative agreement with the exact solution.

The relative inaccuracy of the k-space method for high

1All CPU timings reported in this paper were obtained using
a Linux workstation with a 200-MHz AMD K6 processor and
128 MB RAM.

contrast scatterers may be associated with aliasing effects,
as suggested in [5]. That is, large jumps in spatial contrast
functions are associated with significant high frequency
components of the corresponding k-space spectra. If the
spatial frequency range employed in the k-space algorithm
is not sufficiently large, aliasing errors result. Low-pass
filtering of the contrast functions would remove this alias-
ing, but this also introduces additional errors because high
spatial frequency components of the scattering medium
are lost. The half-band filtering employed here is a com-
promise that greatly reduces aliasing errors but maintains
some contributions from high spatial frequencies (up to
the spatial Nyquist rate).

Computational results for a large scale, two-dimensional
tissue model are shown in Fig. 7. Waveforms computed
by the k-space (four points per minimum wavelength;
CFL number, 0.5; no smoothing) and the finite difference
models (10 points per minimum wavelength; CFL num-
ber, 0.25) were recorded at 130-element apertures com-
posed of simulated point receivers separated by a pitch
of 0.21 mm. The results produced by the finite difference
method and the k-space method are visually indistinguish-
able. However, despite the reduced grid size and limited
computations employed for the finite difference method,
the k-space method was more efficient by about a factor
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Fig. 7. Comparison of k-space and finite difference methods for a
tissue cross-sectional model. a) Chest wall cross section (taken from
[24]), with black indicating connective tissue, dark gray indicating
muscle, and light gray indicating fat. The region is 33.5 mm wide and
17.2 mm high. b) Transmitted waveforms computed by the k-space
method using four points per minimum wavelength and a Courant-
Friedrichs-Lewy (CFL) number of 0.5, shown on a bipolar linear gray
scale with white indicating maximum positive pressure and black
indicating maximum negative pressure. The horizontal range shown
is 27.3 mm at the same scale as a. The vertical range is 3.29 us.
¢) Transmitted waveforms computed by the finite difference time-
domain method using 10 points per minimum wavelength and a CFL
number of 0.25, shown using the same format as b.

of four; the required CPU time for the k-space method
was 0.90 CPU h: the corresponding time for the finite dif-
ference time-domain method was 4.58 CPU h!. This dis-
crepancy in efficiency is even more impressive when note
is made that the k-space method using four points per
minimum wavelength provides significantly higher accu-
racy than the finite difference method using 14 points per
niinimum wavelength (as illustrated in Fig. 3). Thus, the
present k-space method is suggested to be an appropriate
‘replacement for finite difference methods previously em-
ployed to compute propagation through large scale, soft
tissue models [23]-[28].
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Results of the example three-dimensional computation
are shown in Fig. 8. Three-dimensional isosurface render-
ings of the total pressure wavefield are shown at three
instants separated by 0.79 us. For the three-dimensional
computation, the total computation time required was
1.51 h!. The L? error of the computed waveforms, rela-
tive to the exact time-domain solution for scattering from
a sphere [29], was 0.0186.

V. EXTENSIONS TO THE k-SPACE METHOD

The present method can be extended in a number of
ways to increase its range of applicability in computations
of ultrasound tissue interactions.

Absorption effects could be added to the present algo-
rithm in several ways. The most straightforward method
for including absorption is to include an ad hoc damping
term proportional to df5/3t in (2) [3]-(5]. This approach
yields absorption coefficients roughly independent of fre-
quency. Similarly, inclusion of a damping term propor-
tional to 83 f5/0t> (a thermoviscous approximation) would
lead to absorption roughly proportional to the frequency
squared {33]. However, neither of these approaches has a
rigorous justification for use in models of ultrasound prop-
agation in biological tissue.

A physically justifiable approach for inclusion of ab-
sorption in the present algorithm is to consider absorption
associated with multiple relaxation processes. The theoret-
ical basis for this approach is presented in [34]; one imple-
mentation of this method in a finite difference time-domain
algorithm is given in [35]. Because multiple relaxation pro-
cesses can lead to a variety of frequency-dependent absorp-
tion characteristics, this approach provides a possibility of
modeling realistic frequency-dependent attenuation in tis-
sue without introduction of nonphysical dispersion or vio-
lation of causality. Following the methods presented in [35],
absorption caused by multiple relaxation processes can be
implemented in a computationally efficient form. Possible
alternatives include the time-causal power law absorption
formulation of [36].

Another possible extension to the present method is to
incorporate the full elastic wave propagation equations.
This extension would account for shear wave propaga-
tion, which may substantially affect results for propaga-

‘tion models, including bone and other calcified tissue. By

applying methods similar to those outlined in [7] to the al-
gorithm described previously, a full elastic k-space method
incorporating Fourier space evaluation of spatial deriva-
tives and a k-t space propagator could be derived. Such a
method would, as in [7], include separate k-t space propa-
gators for compressional and shear waves.

Boundary conditions of k-space and pseudospectral
methods are inherently periodic, so that simple radiation
boundary conditions cannot be straightforwardly imple-
mented. One option for absorbing boundary conditions is
to include tapered (artificial) absorption functions at each
boundary [37]. The technique of perfectly matched layers
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Fig. 8. Isosurface renderings of the total (logarithmically scaled) pressure wavefield associated with scattering from a “muscle” sphere of
radius 1.5 mm. Incident pulse parameters were the same as in Fig. 4-6. Panels a—d show the wavefield at four instants separated by 0.79 us.
The view shown is such that the incident wave is traveling into the page, so that the visible wavefield includes the backscattered component.
The lowest amplitude isosurface shown is 67.5 dB down from the incident wave amplitude. Each panel shows a rendering of the entire
computational domain (10.66 mm on each side). In panel a, the incident wavefront is just impinging on the sphere; in panel d, the scattered

wavefront has just passed the computational boundary.

(PML) [38] can provide true radiation boundary condi-
tions; however, present PML implementations are not ap-
plicable to the second-order wave equation employed here.
Combination of a k-space method with PML boundary
conditions may require derivation of a new k-t space time
integrator for the first-order wave propagation equations.

The present derivation was based on the linear (small
amplitude) acoustic propagation equations. The k-space
method could be easily extended to incorporate finite am-
plitude acoustic effects. For example, the nonlinear terms
of the Westervelt propagation equation (used in [33] for
modeling of ultrasonic propagation in tissue) could be in-
cluded as effective source terms additional to the effective
sources v and g defined previously. The numerical results
obtained suggest that the k-space method is most accu-
rate when the effective source terms are fairly small; thus,
a nonlinear extension to the k-space method should be
highly accurate for weak nonlinear effects.

Computation times for the k-space method can be re-
duced easily by parallelization. The primary computa-

tional burden of the method is incurred in the multidi-
mensional FFT taken at each time step. Because FFTs
can be efficiently executed on parallel processors [24], [39],
the present k-space method should scale efficiently to large
problems that require parallel processing.

VI. CONCLUSIONS

A simplified derivation of the k-space method for com-
putation of ultrasonic wave propagation has been pre-
sented. The method efficiently accounts for sound speed
and density variations and can be extended to include re-
alistic absorption effects and absorbing boundary condi-
tions. Three-dimensional computations can also be per-
formed without change to the algorithm as derived here.

Analytic and numerical results have shown that the
present k-space method provides superior stability and ac-
curacy over both a similar leapfrog pseudospectral method
and a fourth-order space, second-order time, finite differ-
ence method. This improved accuracy allows larger spatial
and time steps to be employed, so that large-scale multidi-
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mensional computations are more feasible. Computations
using a realistic two-dimensional tissue model support the
conclusion that the k-space method provides high accuracy
and low computational cost for large-scale computations.
The results also indicate that care should be taken when
choosing and implementing a forward solver for a particu-
lar scattering problem. For instance, in the present k-space
method, one can suppress spurious waves by smoothing
sound speed and density variations; however, this smooth-
ing does not decrease the time-domain L? error in some
cases. Similarly, the finite difference time-domain method
employed here is less accurate than the k-space method in
most cases examined here, but the method achieved higher
accuracy for a test case with a bone-like scatterer. In gen-
eral, the k-space method proposed here should be most
applicable to large-scale scattering problems involving low
contrast inhomogeneities, such as soft tissue structures.
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Abstract - We investigate accuracy of existing 2D
pseudospectral and k-space formulations for
simulating acoustic propagation in tissue or model
scattering media. They are intended to provide
insight into tissue-ultrasound interaction and a “test
bed” for aberration correction schemes in medical
imaging. Both methods employ FFT’s to evaluate
spatial derivatives to high accuracy on coarse grids.
The primary difference lies in the approach to time
integration.  Scattering in large-scale, 2D,
inhomogeneous media is included. We compare
simulations against analytical solutions to illustrate
spatial and temporal discretization required for
acceptable solutions.

INTRODUCTION

The medium is represented by a uniform Cartesian
grid where pressure/stiffness and velocity/density
are unknowns/parameters at discrete points.
Spectral operators in space enable accuracy and
computational efficiency in very large models.
However, inhomogeneities are often represented as
piecewise constant from node to node, rather than
smooth.  The resulting stairstep can produce
spurious diffractions at edges/corners, inaccurate
reflections and transmissions at interfaces and local
Gibbs phenomena, by approximating derivatives at
a material discontinuity.  Thus, the efficiency
permitted by coarse spectral grids is compromised
by the need to resolve interface derivatives.

For example, scattering by a soft cylinder requires
only two nodes per wavelength inside and outside
the cylinder for accurate propagation, but
significantly more nodes per wavelength are
necessary to reduce interface artifacts. Interface
artifacts are quantified for a single interface, 1D
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multilayer models, and cylindrical scatterers.
Abdominal wall cross sections with coarse and fine-
scale inhomogenities are used to explore fidelity of
wave propagation versus nodes per wavelength and
tissue characteristic lengths. We show that the
existing tools are useable in 2D.

The pseudospectral method is implemented in the
SpectralFlex code. Kbench implements the k-space
method.

PSEUDOSPECTRAL AND K-SPACE METHODS

The pseudospectral and k-space methods were
formulated to provide efficient high-accuracy
solutions to long range wave propagation problems.
In fact, they debuted during the same year [1,2]. We
briefly describe the two methods as implemented in
[3,4], highlighting the major similarities and
differences.

Both use FFT’s to evaluate spatial derivatives to
high accuracy on coarse grids. The primary
difference lies in their respective approaches to time
integration. Note that coarse spatial grids provide
the primary incentive for FFT based (or any high
order) method. The computational burden is linear
in the number of timesteps per cycle, for both 2D
and 3D. Including the timestep, computational
burden is proportional to the number of Points Per
Wave (PPW)’ in 2D or (PPW)* in 3D.

SpectralFlex adopts a 4™ order staggered Adams
Bashforth ABS4 time integrator [5]. Among
general purpose integrators, this is close to optimal
for the current applications - 2-3 digits of accuracy
for a wave propagating several hundred wavelengths
on the coarsest possible grid. The stability limit for
ABS4 in 2D is CFL = 0.3. The CFL number is
defined as: CFL = At/(Ax/c), where At is the
timestep, ¢ is the wavespeed and Ax is the cell size.
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Accuracy frequently requires a smaller timestep,
say CFL = 0.1. Kbench implements a time
integrator in k-space based on the exact solution for
waves propagating in a homogeneous medium [4].
It outperforms the general purpose ABS4 time
integrator for weak scatterers in a homogeneous
linear acoustic medium. ABS4 becomes more
efficient when the scattering objects have a larger
impedance contrast.

LONG RANGE PROPAGATION

To illustrate the advantages of the FFT based
approach for long range propagation, we propagate
a 2.5 MHz pulse 200 wavelengths through water
using both SpectralFlex and PZFlex, a finite
element code that is second order accurate in both
space and time. The center frequency is 2.5 MHz,
but spectral content is observable up to 5 MHz.
Thus, 4 PPW at 2.5 MHz is the minimum sampling
capable of resolving the pulse.

Figure 1 compares exact, PZFlex and SpectralFlex
solutions. SpectralFlex used 4 PPW at CFL = 0.1,
whereas PZFlex used 20 PPW at CFL = 0.8. These
discretizations in time and space are typical of those
that would be used in real problems. The
SpectralFlex signal looks good and can be made
better by reducing the timestep. The PZFlex signal
is delayed in time and badly dispersed. A much
finer grid is required to achieve reasonable
accuracy. Note that at CFL = 1., PZFlex becomes a
characteristic method, and produces exact results,
even at 2 PPW. Unfortunately, this only works for
1D linear problems.

Kbench produces exact results for this example
because the time integrator is based on the exact
solution for a homogeneous medium.

DISCONTINUITIES

Spectral methods compute highly accurate spatial
derivatives of smooth fields. Thus, in homogeneous
regions, 2 cells per minimum wavelength (ie,
highest spatial frequency) suffice. = However, at
material interfaces both the pressure and velocity
fields should exhibit slope discontinuities as given
by (1), where n denotes the normal direction and the
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superscript defines the + or — side of the interface.
The velocity field likewise exhibits slope
discontinuities at interfaces.

Spectral methods enforce smoothness,
approximating the jumps in normal derivatives with
steep gradients over a few cells. This
approximation is quite good at 10-20 cells per
wavelength, but less accurate at 2 cells per
wavelength. For a staggered grid, as in
SpectralFlex, the material interfaces coincide with
velocity nodes, so we average the density at these
interface points. On a regular grid, all the nodes lie
away from interfaces, so no averaging is necessary,
but the accuracy is even worse than for the
staggered grid.

1.00 Exact

0.80 { —~ — — SpectralFlex, 4 PPW,
CFL=0.1

060 ....... PZFlex, 20 PPW,

0.40 CFL=0.8

0.20
0.00 {
-0.20
-0.40
-0.60
-0.80
-1.00

Pressure

80 81 82
time [usec]
Figure 1. Long range pulse propagation through
water.

1D versus exact solutions

Table 1 summarizes material properties used for the
1D benchmarks. Figure 2 illustrates the reflection/
transmission of a normally incident pulse at a
water/fat interface as modeled by SpectralFlex. To
plotting accuracy, the transmitted signals appear
exact (because it has much larger amplitude than the
reflected wave). However, the error in the reflected
signal is readily apparent at 4 PPW, and barely
visible at 6 PPW.

Figure 3 shows results for a water /bone interface.
In this case, errors are visible in both the reflected
and transmitted signals at 4 PPW. In both codes, the
most pathological case is varying density/constant
stiffness. Fortunately, most tissues have a higher
contrast in stiffness than density [6], so this worst
case is seldom encountered. As shown in Fig. 4
(density=1000, 928 kg/m3) errors in the reflected
wave are visible even at 12 PPW.
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Table 1 — Material Properties for 1-D benchmarks

Material | Density [kg/m3 ] Wavespeed [m/sec]
Water 1000. 1500.
Fat 928. 1427.
Conn 1100. 1537.
Musl 1041. 1571.
Livr 1050. 1577.
.08
06 o D - E’é%‘l:!ts per wavelength -
.04 ... wresere 6 cells per wavelength
® Dome——— 8 cells per wavelength
5 02
(723
@ .00
& .oz
-04
06 4. - L
-08 .
17 18 19
time {usec]

Figure 2. Reflected pulse at a water/fat interface.

0.80

0.60 Exact . X

. — — = 4cellsper wave;ength
------- 6 cells per wavelength
e40{ - Y L 8 cells Ser wavelength

0.20
0.00

Pressure

-0.20
-0.40
-0.60

-0.80
08 17 18 19

time [usec]
Figure 3. Reflected pulse at a water/bone interface.

0.20 Exact

015/ =~— = 4 cells per wavelength
H ETREPPPR 8 cells per wavelength <.
----- 12 cells per wavelength £

0.10
0.05
0.00 1
-0.05
-0.10
-0.15

-0.20
16.5 17.5 18.5

time [usec]
Figure 4. Reflected pulse from worst case interface.

Pressure [ x 10**-1]

The next benchmark examines propagation
through a 1-D approximation of an abdominal cross
section. Material parameters are again given in
Table 1. Slight errors in the transmitted wave are
apparent at 4 PPW (Fig. 5), but not at 8 PPW.
Reflected signals (not shown) are similar. Figure 6
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illustrates the effect of coarse non-conforming grids.
At 4.1 PPW, cell boundaries are misaligned with
actual material interfaces by up to ' cell. This is, of
course, the case for any real model with
discontinuous material properties. Properties are
assigned based on the center of the cell. The errors
introduced by this sampling dwarf all others. More
will be said about this in a later section.

0.40

Exact .
~ ~ = 4 cells per wavelength
-------- 8 cells per wavelength

o
w
=)

o
n
o

(=4
-
o

Pressure [ x 10**-1]
S5 o
3 8

o
i
<

-0.30
40 42 44

time [usec]
Figure 5. Pulse transmitted through 1-D abdominal
wall model.

Exact
- - 4 cells per wavelength
-------- 4.1 cells per wavelength

Pressure
[=]
[=]
o

-0.04
09 ' 42 44
time [usec]
Figure 6. Pulse transmitted through 1-D

approximation of abdominal wall. Non-conforming
grid.

Scattering by cylinders

In addition to the numerical errors at interfaces,
approximations are introduced by the stair-step
representation of curved surfaces. To quantify these
approximations, we consider 3 mm radius fat and
bone cylinders immersed in water and insonified by
the usual 2.5 MHz pulse. We compute the difference
between exact and numerical signals for each
timestep at 128 locations at 6 mm radius, and equal
spacing in theta. We use the L* norm of this matrix
as an error metric. Figure 7a shows the L? error vs
PPW for kbench and SpectralFlex at CFL = 0.2.
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The curves are similar, though kbench is slightly
more accurate. For the larger contrast bone case in
Figure 7b, similar trends are evident, but in this case
SpectralFlex is more accurate. The error is tending
to zero as the PPW increases. The rate of
convergence is not quite quadratic. For context, Fig.
12 shows waveforms for L? error near 0.01.

Table 2 - Material Properties for Cylinders

Material | Wavespeed [m/sec] | Density [kg/m’]
Water 1524, 993.

Fat 1478. 950.

Bone 3540. 1990.

Figure 7c illustrates that at low CFL, the error due
to time integration tends to zero. For this problem,
kbench permits reasonable accuracy at roughly
double the SpectralFlex timestep. For the bone
cylinder, the stability limit of SpectralFlex is 0.15
(0.3 in the bone) , and kbench can go up to 0.2.

0.30 - B 3 N + 0.60
' —— kbench
\ - SpectralFlex

. ——kbench
. = - SpectralFlex

025 1\

° °
2 I
@ B

L2 Error [x 10**-1]

°
3

P Soodna oo b eodd

0.00 - 0.00
4.00 5.00 6.00 7.00 8.00 4.00 5.00 6.00 700 8.00
Cells per wavelength

Fat Cylinder, CFL = 0.2

Cells per wavelength
Bone Cylinder, CFL = 0.1

0.20 . . . . . N . 0.
‘——:kbench : :
= -:SpectralFiex:

R Sl
:— - SpectralFlex

materials

water

fat

muscle

connective
tissue

Figure 8. Abdominal wall model.

Tissue examples

Figure 8 shows an abdominal wall cross section
[7,8]. This model is insonified by a 4.35 MHz plane
wave pulse. Figure 9 displays typical reflected and
transmitted signals computed by SpectralFlex at 4, 8
and 12 PPW. The grids were defined such that
material boundaries always lie in exactly the same
place. Again, it is confirmed that even the coarse 4
PPW model produces fairly accurate results.

0.80

. L 4 cells per wavelength
0.60 : . . = — =" 8 cells per wavelength

"""" 12 cells per wavelength
0.40 K .

0.20

0.00

Pressure

-0.20

-0.40

-0.60

-0.80
20.00 22.00 24.00

time
Figure 9. Transmitted pulse from Abdominal wall
model.

INTERFACE TREATMENTS

Given that the largest numerical errors in the FFT
based methods stem from material interfaces, we
look at several interface treatments for reducing
those errors.

Jump conditions

010 030 050 070 0.50 o0 .14 .18
CFL CFL

Fat Cylinder, 6 cells per wave Bone Cylinder, 6 cells per wave

Figure 7. Cylinder benchmarks. Convergence with
increasing discretization.
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One possible method for improving the accuracy at
interfaces is to split the solution into smooth and
non-smooth parts, and apply the spectral method
only to the smooth part. The idea is to introduce
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local corrections at material interfaces that enforce
the jump conditions exactly. E.g., construct low
order polynomials over the cells adjacent to the
interface that have zero value and zero slope 1 cell
away, and, when added to the continuous part
satisfy the jump condition (1) at the interface.
Obviously, the correction is not required to be local,
but if it covers more than 1 cell, the algorithm will
become much more complicated for multiple
interfaces. LaVeque [9] discusses such an approach
applied to finite difference models.

Figure 10 compares reflected and transmitted
signals for coarse models of an interface with and
without the jump correction for interface velocity.
This example isolates the effects of density changes
in that only the density is discontinuous. The bulk
modulus is continuous.  The correction term
improves the computed result, but not to the level of
a homogeneous material. A similar correction could
be applied to the discontinuity in the velocity
gradients. However, it will have a weaker effect on
the staggered grid since the leading coefficients are
already continuous.

0.10

20 elements
_____ 5 elements
............ 5 elements - comected

0.05

Pressure
[=]
o
o

-0.05

-0.10 . . . S
5.00 5.40 . 5.80
time

Figure 10. Jump treatment applied to interfaces.

Smoothing (Bandlimitation)

Another approach to improving accuracy at
discontinuities is to smooth or bandlimit the model
before sampling. This removes unresolvable high
spatial frequencies from the model itself. We found
that perfect bandlimitation reduced computed
signals too much, but a “halfband” filter improves
accuracy. The halfband filter is smooth with an
amplitude of 0.5 at half the sampling frequency.
Figure 11 shows direct and halfband filtered kbench
models of a 3 mm cylinder using the same number
of PPW. The corresponding pressure fields are
plotted using a 60 dB bipolar log scale.
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a) Unsmoothed

b) Halfband Filtered
Figure 11. Direct sampled & bandlimited cylinders.
Models and pressure, 60 dB bipolar log scale.

The staircase representation of the cylinder
generates diffracted signals at each corner in 1la,
but these have disappeared in 11b.  Figure 12
shows selected waveforms from the direct and
halfband sampled models. The late time diffractions
have been removed, and overall L? error was
reduced from 0.0155 to 0.0105. This exercise
demonstrates that smoothing can be useful.
However, there are some practical complications.
The current procedure computes the smoothed
object as the inverse transform of the object’s
analytical spectrum multiplied by the filter, and is
thus defined only for objects with a known
analytical spectrum. The extension to more general
models defined on a pixel by pixel level has not yet
been demonstrated. Also, continuous variations of
material properties produce a large number of
distinct materials. In the limit, each cell of the
model has different properties. For the purely
acoustic case, this presents little difficulty, but when
material nonlinearity or viscoacoustic damping is
added, the complexity intensifies. E.g., for each
wavespeed/damping set, an optimization problem
must be solved to compute the appropriate
relaxation constants, and these constants must be
stored.
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Figure 12. Backscattered signals from direct (top)
and bandlimited (bottom) models.

Note that this procedure adds information to the
model compared to the unsmoothed case. Because
smoothing is applied to the analytical cylinder, the
continuous variation of material constants provides
a richer set of parameters than is available in the
unsmoothed representation. As long as the model is
known to higher resolution than the grid,
information will be added. It is an interesting
question whether smoothing would be beneficial on
a grid finer than the pixel by pixel model definition.
For example, the UOR tissue cross sections [7,8] are
the most detailed models we know of. These are
represented as piecewise constant with a pixel size
0.085 mm (about 7 PPW for a 2.5 MHz pulse). For
a 5 MHz pulse, the coarsest grid would have finer
resolution than the model.

Volume averaging of material constants has also
been shown effective [10]. This adds additional
information compared to the unsmoothed case, and
the correction is more local than smoothing.
However, the practical difficulties are the same.

As a last resort, increased discretization (brute
force) will always converge to an accurate solution.
This is a practical solution in 2D, as the above tissue
examples indicate.
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CONCLUSIONS

Model parameterization is a critical issue and puts
all the above results in practical perspective. As
shown above, differences in material constants or
interface locations cause much larger differences in
reflected/transmitted signals than any numerical
errors in the FFT based methods. For gaining
insight, or as a test-bed for aberration correction
schemes, a 4 PPW model is sufficient at frequencies
of 2.5 MHz or greater. Fine grids or cell-by-cell
representation of material properties are needed only
for more accurate rendition of model geometry.
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ABSTRACT

A k-space method for large-scale simulation of ultrasonic pulse propagation is presented. The
present method, which solves the coupled first-order differential equations for wave propagation in
inhomogeneous media, is derived in a simple form analogous to previous finite-difference meth-
ods with staggered spatial and temporal grids. Like k-space methods based on second-order wave
equations, the present method is exact for homogeneous media, unconditionally stable for “slow”
(c(r) < ¢p) media, and highly accurate for general weakly scattering media. In addition, unlike
previous k-space methods, the form of the method allows straightforward inclusion of relaxation
absorption and perfectly matched layer (PML) nonreflecting boundary conditions. Numerical ex-
amples illustrate the capabilities of the present k-space method. For weakly inhomogeneous media,
accurate results are obtained using coarser temporal and spatial steps than possible with compa-
rable finite-difference and pseudospectral methods. The low dispersion of the k-space method
allows accurate representation of frequency-dependent attenuation and phase velocity associated
with relaxation absorption. A technique for reduction of Gibbs phenomenon artifacts, in which
compressibility and exponentially-scaled density functions are smoothed by half-band filtering, is
introduced. When employed together with this smoothing technique, the k-space method provides
high accuracy for media including discontinuities, high-contrast inhomogeneities, and scattering

structures smaller than the spatial grid resolution.

PACS numbers: 43.20.Fn, 43.80.Qf, 43.20.Px




I. INTRODUCTION

This paper presents a method for computation of acoustic propagation in inhomogeneous media.
The present method is an adaptation of the k-space method originally derived by Boj arskil>2 and
extended by several others.>™ As shown in Ref. 6, the k-space method has considerable advan-
tages for large-scale simulations of ultrasonic propagaﬁon in soft tissues. The k-space method
combines accurate spectral evaluation of spatial derivatives with a temporal iteration procedure
that is exact for homogeneous media. For soft tissues, in which local medium properties show
small variations around nominal background properties, this method provides excellent efficency
and accuracy compared to other approaches such as finite-difference and pseudospectral meth-
ods.%7

Previous formulations of the k-space method for acoustic propagation have numerically solved
second-order differential wave equations. Such formulations have some advantages, including
conceptual simplicity and computational efficiency, since the acoustic fields are defined only by
one independent variable, the acoustic pressure fluctuation, instead of acoustic pressure and vector
particle velocity fluctuations. Propagation in inhomogeneous media including density variations
can be computed using a simple transformation of the pressure variable (e.g., as in Refs. 5 and 6).

However, several desirable extensions to the k-space method are not possible using the usual
second-order formulation. In particular, perfectly matched layer (PML) absorbing boundary con-
ditions are not readily incorporated into current second-order k-space methods, while PML’s are
easily formulated for coupled first-order acoustic propagation equations. Additionally, as derived
in Ref. 8, the full wave equation incorporating relaxation absorption effects is of order 2 + N,
where N is the number of relaxation processes employed. Relaxation effects can be incorporated
more simply into numerical methods using coupled first-order acoustic propagation equations.’

Here, a k-space method is derived based on the coupled first-order differential equations for
linear acoustic propagation. The method accounts for spatially-varying sound speed, density, and
relaxation absorption processes, and includes PML absorbing boundary conditions. The formula-
tion of this method shows that the k-space method can be regarded as a finite-difference method
containing linear correction operators. Use of staggered spatial and temporal grids increases the
range of applicability for the method, and facilitates inclusion of relaxation absorption and PML
boundary conditions. The close analogy between the method presented here and existing finite-

difference methods allows extensions developed for finite-difference methods to be easily applied




to the k-space method, and also allows current finite-difference algorithms to be improved by in-
clusion of the k-space operators introduced here.

The present k-space method is, like previous k-space methods based on second-order wave
equations,® temporally exact for homogeneous media. For general media, the present method also
has accuracy and efficiency advantages similar to previous k-space methods. Numerical results
presented here show that the k-space method presented here has the high accuracy and stability
characteristics of the original k-space method, including unconditional stability for media with
¢(r) < cg. The low numerical dispersion inherent to the k-space method allows the frequency-
dependent absorption and physical dispersion associated with relaxation-process absorption to be
accurately modeled.

A method for smoothing of discontinuous scattering media is also presented here. Together
with the k-space method, this smoothing method is shown to provide accurate results for strongly
scattering media and for media with structures smaller than the grid resolution. Numerical exam-
ples also demonstrate the efficiency of the present k-space method for large-scale computations of

interest in ultrasonic imaging studies.




II. THEORY

A. Second-order and first-order £-space methods

The k-space method derived below is based on the coupled first-order linear acoustic propagation

equations for a fluid medium of variable sound speed and density. For a lossless two-dimensional

medium, these are:!?

ou(r, t)

p)y—— = —Vpr1)

1 op(x, t)
p(Mc(r)? ot

where u is the (vector) acoustic particle velocity fluctuation with components u, and u, p is the

-V .u(r, 1), §))

acoustic pressure fluctuation, p(r) is the density of the medium, c(r) is the sound speed of the
medium, and r denotes the vector coordinate (x, y).

Many numerical methods for acoustic wave propagation have.been based on Egs. (1). For
example, in Ref. 11, ultrasonic propagation in an abdominal model was computed using a finite-
difference method applied directly to the coupled equations.

The second-order wave equation corresponding to Eqgs. (1) is10

p(r) p®)c()? o

This equation can be solved numerically by the k-space method. Below, a brief sketch of the -

0. )

space solution to Eq. (2) will be given and this solution will be analyzed to obtain a corresponding
k-space method for coupled first-order propagation equations. For simplicity, the derivation will
assume sound speed and density are constant, i.e., p(r) = po and c(r) = cop. A general derivation
of the second-order k-space method is given in Ref. 6, while the first-order k-space method is
straightforwardly extended to inhomogeneous media, as seen below.

For bandlimited signals such as typical ultrasonic pulses, very accurate spatial derivatives can
be obtained by Fourier transformation of the pressure field.!? This is the principle behind pseu-
dospectral methods like that described in Ref. 13, in which the spatial derivatives from Eqs. (1) are
evaluated using discrete Fourier transformation and temporal iteration is performed using a fourth-
order Adams-Bashforth/Adams-Moulton scheme. For the case of homogeneous sound speed and

density, Eq. (2) can be written in the spatial-frequency domain as

?p(k, 1) A
T = —c%kzp(k, t)a (3)




where p(K, t) is the two-dimensional spatial Fourier transform of the acoustic pressure fluctuation
p(r, ).

A discrete form of the left-hand-side of Eq. (3), obtained using a second-order-accurate finite-
difference scheme, yields a crude pseudospectral method, expressed as

p(r,t + At) = 2p(xr, t) + p(r,t — At)
(At)?

= —GF [ Fpan]), @

where F represents the two-dimensional spatial Fourier transform. In numerical implementations
of Eq. (4), the spatial derivatives from the right-hand side of Eq. (3) are accurately represented
using discrete Fourier transformation. Still, the discrete representation of the temporal derivative
on the left-hand-side is significantly dispersive. Current pseudospectral methods!>!3 typically
use higher-order temporal integration schemes to decrease dispersion errors. However, for the
homogeneous-medium case, temporal iteration can be performed exactly (e.g., without any disper-
sion) using the k-¢ space scheme®

pkt+ A =2pk D) +pkt—AD) .
(A1) sinc (coAt k/2)? = ~(cky'pl. 1), ©)

where sinc(u) = sin(u)/(u). The temporal iteration scheme of Eq. (5) is mathematically equiv-
alent to the scheme originally presented in Ref. 2. The temporal exactness of this scheme follows
from an exact discrete representation of the harmonic-oscillator differential equation, described in
Ref. 14. Temporal iteration can be performed in the spatial-frequency domain, as done in Ref. 6
using a generalized form of Eq. (5). Alternatively, the same iteration can be accomplished in real
space by inverse Fourier transformation of Eq. (5). This results in the procedure

p,t+ At)—=2pr, )+ p(r,t — At)
(Ar)? -

—2F! [k2 sinc (coAt k/2)? F[p(x, z)]] . (6)

Below, the operation on the right-hand side of Eq. (6) is called the second-order k-space operator.

This operator is defined as
2
[V<COA’)] p(r, 1) = —F~! [k2 sinc (coAt k/2)? F[p(r, t)]] . 0

The form of Eq. (6) suggests that the second-order k-space method can be considered a corrected
finite-difference method in which the spatial Laplacian is replaced by the k-space operator. How-
ever, the k-space operator of Eq. (7) incorporates not only spectral evaluation of the Laplacian, but

also a temporal correction term associated with the k-¢ space iterator of Eq. (5).




To construct a k-space method for coupled first-order wave propagation equations, the second-
order k-space operator can be factored into parts associated with each spatial direction. Below, this
procedure is carried out for the two-dimensional case. An appropriate factorization is given by the

first-order k-space operators

ey = 1 e ek e )
;f_g)f_)y = B [iky = sine (co 5t k/2) Flp G, 0], ®)
so that
2
( a(coit)+x a(coft)_x a(coft)+y 6(50At)—y\ p(r, t) = [V(cOAz)] p(r, t). ©)

The spatial-frequency components ky and k, are defined such that k> = &2 + k2.

Using the operators of Egs. (8) within Egs. (1) enables construction of a first-order k-space
method equivalent to Eq. (6). Application of the exponential coefficients from Egs. (8) requires the
acoustic particle velocity variables u, and u,, to be evaluated on grid points staggered by distances

of Ax/2 and Ay/2, respectively. The resulting algorithm is

ur (@, t1) —ue(ry,t7) 1 9p(r,1)
At T p(ry) oleodn)ty’
uy(ry, t7) —uy(ry, t7) 1 op(r,1)
At T plr) ottty
pr,t+At)—p(r,t) o (Oux(r, 1) | ouy(ra, t)
N = —p(r)c(r) AT @by, (10)
where
ry = (X+Ax/2=y), rZE(x>y+Ay/2)>
tt = t+At/2, and t” =1t — At/2. (1)

In Egs. (10), the coefficients ¢y and pg have been replaced by the spatially-varying sound speed
and density c(r) and p(r). Spatial staggering in Eqgs. (10) is implicitly incorporated into the spatial

derivative operators employed. For example, the operators 8/ 0(0AN’y and o /80207y defined by




Eqs. (8) correspond, by the shift property of Fourier transformation, to derivatives evaluated after
spatial shifts of Ax/2 and —Ax /2, respectively.

Staggered temporal grids, discussed in the following section, have also been employed in
Egs. (10). Notable is that the ordering of (coAz)™ and (coAt)™ operators is arbitrary depend-
ing on how the staggered grids are configured; however, for solution of coupled equations, the
operators should be used in pairs such that the spatial shifting operations cancel out over any tem-
poral interval of length Az. Rationale for the use of spatial and temporal staggering is given in the
folowing section.

The k-space method of Egs. (10) is straightforwardly shown to be equivalent to Eq. (5) for
c(r) = cg and p(r) = po. Thus, this first-order k-space scheme is temporally exact for homoge-
neous media. As shown below, the method also provides high accuracy for media with properties
are close to the background values, and in conjunction with an appropriate smoothing algorithm,
yields high accuracy even for media including high-contrast discontinuities.

Theoretical stability limits for the present k-space method can be computed as described in
Ref. 6; given neglect of density variations and assumption of a worst-case sound-speed variation
¢(r) = cmax, the results are identical to those for the second-order k-space method. The resulting

theoretical stability boundary is
7z CFL < (&)

—— b
2 Cmax

where CFL denotes the Courant-Friedrichs-Lewy number coA¢/Ax. Thus, like the original k-

sin

(12)

space method,® the k-space method derived above is also expected to be unconditionally stable for
media with ¢(r) < ¢g everywhere.

As with the second-order k-space method, the first-order method of Eqgs. (10) can be regarded
as a finite-difference method with correction factors that appear within the spatial derivative terms.
The k-space algorithm of Egs. (10) is analogous to standard second-order-accurate finite-difference

methods for computation of acoustic wave propagation® 1>

except that second-order-accurate spa-
tial derivatives have been replaced by the k-space operators of Eqgs. (8) that incorporate spectral

spatial accuracy as well as corrected temporal iteration.

B. Properties of staggered spatial and temporal grids

The temporal and spatial sampling configuration employed in the k-space method of Egs. (10)

is directly analogous to staggered-space, staggered-time schemes employed in previous finite-




difference methods.® 1> Such staggered configurations are known to increase accuracy and stability
for discrete representations of odd-order spatial and temporal derivatives.'? For example, because
the discrete Fourier transform is implicitly periodic, Gibbs phenomenon (ringing) artifacts result
if the coefficients on the right-hand side of Eq. (8) have different values at the maximum spatial
frequency 7/ Ax and the minimum negative spatial frequency —z /Ax. The coefficient ik (which
would correspond to a nonstaggered spatial grid) has a jump discontinuity of magnitude 2z / Ax at
the transition between k = n/Ax and k = —zn/Ax. Coefficients of the form used in Egs. (8) re-
move this discontinuity and, thus, can substantially reduce numerical artifacts in some cases, such
as when the wavefield is spatially undersampled. Accuracy and stability are particularly increased
for media containing large discontinuities.'®

Although staggering slightly increases the complexity of the k-space algorithm, the benefit
from spatial staggering can be easily understood by examining the physical relationship between
sound pressure and particle velocity. Figure 1(a) represents the spatial sampling locations for sound
pressure and particle velocity in the present staggered grid. The arrow at each sampling location
indicates the direction of particle motion represented by each parameter. In this configuration, a
local change in sound pressure p(x, y) immediately affects the adjacent particle velocities. On
the contrary, in a nonstaggered grid configuration, in which p, uy, and u, are all sampled at the
same grid points, symmetry prohibits a local change in sound pressure from immediately affecting
the particle velocity components sampled at the same position. This effect limits the accuracy of
computations for high-spatial-frequency components of the wavefield.

Figure 1(b) shows the spatial-frequency response of the second-order-accurate discrete finite-
difference operators for the first-order spatial derivative. Curve (i) shows the response for a non-
staggered center difference configuration, curve (ii) shows the corresponding response for the stag-
gered grid center difference configuration, and curve (iii) shows the ideal frequency response for
the continuous first-order derivative. Finite-difference schemes with higher-order accuracy show
improved high-spatial-frequency response. Spectral computation of the first derivative on a stag-
gered spatial grid, performed implicitly within the present k-space method, achieves this ideal
frequency response up to the spatial Nyquist frequency 7z /Ax.

Figure 2 illustrates the characteristics of the temporal scheme employed. In panel (a), the
temporal iteration process is shown for the staggered-time marching scheme. Because the time
step is interleaved, time derivatives are evaluated based on values of spatial derivatives at the center

of each time step. This staggering minimizes error when a crude time integration (Euler) scheme




is employed. Panel (b) shows the difference between the true derivative in the center of the time
step (slopes of the tangential lines) and a standard forward difference (slopes of the straight lines
between A, B and C). Although time staggering reduces the error between the finite difference
and the actual derivative, staggered finite-difference schemes still incur significant error with large
time steps. This error is compensated in the k-space method by introducing a correction factor
that leads to a temporally exact solution for a medium with constant sound speed. Although a
temporally exact discrete solution can also be obtained using a nonstaggered grid,'* staggered
grids allow the necessary compensation to be performed using a single multiplicative factor. Use
of a staggered time scheme also facilitates modeling of absorption, as shown in the next section.

Thus, temporal staggering is important to the first-order k-space method.

C. Relaxation absorption and perfectly-matched layers

The close analogy between the k-space method of Egs. (10) and standard finite-difference tech-
niques!> allows easy addition of features such as perfectly-matched layer (PML) absorbing bound-
ary conditions and relaxation-process absorption to the present k-space method.

In the following, the acoustic pressure fluctuation p(r, ¢) is split into x and y components,
p(r, t) = px(x,t) + p,(r, t). This splitting is necessary for incorporation of the PML. Following
the procedure applied to the finite-difference method in Ref. 9, the field equations are then written
as a group of coupled first-order equations, with decay terms corresponding to relaxation absorb-
tion and to the PML. Discrete forms of these field equations are defined in a manner that provides
high accuracy in the presence of large absorption.’

The (continuous) field equations for a PML medium with relaxation absorption can be written

as
ol py(x, ) + p,(r, 1)
p(r) (240 0) a“"(r ) b, ) = — . Ay (13)
ol pe(r, 1) + py(x, )
(r) /M + oy () uy (r, t)\ = - % > , (14)
k(5 ® /aPX(r )+ax(r)px(r t)\ = _au;(;., t)’ (15)
k(r,t) ® ( py( +ay(r)py(r t)\ = —aLa(yr’—Q, (16)

where a, (r) and a,,(r) are absorption parameters employed only within the PML and the ® opera-
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tor denotes temporal convolution. Equations (15) and (16) contain a generalized compressibility,®

defined as

m)_m,

k(r,t) = Koolr) () +Z ® H(), (17)

where koo () is the usual compressibility 1/[p(r)c(r)?], :(r) is the relaxation time for the ith
relaxation process, x;(r) is the relaxation modulus for the ith-order relaxation process, with units
of compressibility, and H () is the Heaviside step function. The integration (convolution) terms in
Egs. (15) and (16) make these equations equivalent to second-order differential equations in time.
The convolution terms can be simplified using properties of the Dirac J function and Heaviside step
function that appear in the generalized compressibility (17) as well as identities for convolutions

involving time derivatives.’ Thus, for example, the left-hand side of Eq. (15) can be written as

/6px t) z()

Koo (T) + ax (r) px(r, t) ‘|‘Z x( t)

K5O —t/m g~ \
+|:§7;1( 5 t H() Tx(r) +ox(@®) ' | ® pi(r, ).

The last term in this latter expression is still a convolution of two time-dependent functions, and
this form presents difficulties for numerical implementation. The difficulties can be resolved by
introducing a state variable, which allows Eqgs. (13)—(16) to be rewritten as a set of simultaneous
first-order differential equations. The state variable employed here is a filtered version of the
acoustic pressure fluctuation, defined as

( e t/u(r)

e HO © 20 (5.0 (18

Si(-) (r,t) =

where (-) denotes x or y.
Using the state variables defined by Eq. (18), the continuous field equations are rewritten as the

coupled first-order differential equations

- ( \
ux (r, 1) B 1 olpx(r,t) + py(r, 1)
T + ax(r) ux(r: t) = _p(l‘) ax s
6 t l 6(Px(ra t) +py(r, t)\
%_)‘-{-ay(r)uy(r t) = _p(r) % ,
apx(r, 1) 1 Ouy(r, t) X x
T + ux(r) pe(r,t) = _Koo(r) |: IZIZV (l‘)S (r, t)]
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BOD | @ pye) = —— [a“y(r = Zvy(r)Sy(r f>]

ot Koo (T)
osr(r,t) 1 _ (o)
o tami®D = e
oS! (x, 1) 1 _ py,0)
ot + ‘L'i(l‘)Si x, H = 7; (1) ’ (19)
where
1 k()
o) = - = > @ 70 (r) (20)
(o 0] i=1 1
and
RICE '%(—(; — xi (r) ag) (r). (21)
Each of Egs. (19) has the form
aRg D 4 BR@1) = O, 1), 22)

where £ is a constant that controls the decay of a field variable R. Following Ref. 9, the field equa-
tions can be transformed into a form that allows larger attenuations without numerical instability.

This form is

aleP Rer, 1))
— = o, . (23)

Equations of this form can be discretized using the time-staggered scheme

ePUHBDR(r ¢ 4+ At) — P R(x, 1)
At

= LMD O, t 4+ At/2) (24)
and the equivalent form
Rt + At) = e PO (=PARRG 1) 4 At O(x, t + At/2)). 25)

To obtain the final k-space scheme including PML and relaxation absorption, Eq. (25) is applied
directly to Egs. (19). The spatial derivatives are replaced by the k-space operators (8), and the
particle velocity variables u, and u, are evaluated on staggered spatial and temporal grids, as
in the lossless algorithm of Egs. (10). The state variables Si(') are evaluated using a staggered-

time scheme. The final discrete field equations, written in a form suitable for direct numerical
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implementation, are

| a( r,t)+ r,t \ ]
U (r] t+) — e_llx(rl)At/z e—ax(rl)At/Z u (1‘1 t_) _ At px( ) _py( )
X s X H p(l‘l) a(COAt)+x 5
| a( r, t) + r, t \ T
uy(ra, tt) = e ®@A2 e TDBY2, () 1) - At Dx(x, ) + py(r, 1)
o T p(r2) alcodn*y, )

_ _ At [Buy(ry,tT) al \
= e hxOAY2 | pmpx()AL)2 _ LD SR s o
px(r: t + At) = € € pX(ra t) Koo(r) a(COAt)—x vl (l') Sz (rat ) El

At [0u,(ry, t o
py(l', t+ At) — e—ﬂy(l')At/Z e—ﬂy(r)At/Z Py(l', t) _ / y( 2 ) _ Zvi)’(r) Sl-y(l', t+)\ ,
1

koo(D) 00Dy

S*(r, t+) — -—Az/[Zr,(r)]r —At)[27 ()] Sx(r ) + Ath(l‘ ’)—l,
! 7; (r)

Sy(r t+) — —AI/[ZT,(I‘)] |_ —At/[27i(n)] S.Y( ¢t ) + A2 py(r t)-l (26)
1 ] l( ) b

where the quantities x and v are defined by Egs. (20) and (21), respectively.

This scheme provides spatial derivatives with spectral accuracy, temporal iteration that is exact
for a homogeneous, lossless medium, and additional corrections that allow stable computations
to be made in the presence of large absorption coefficients. The incorporation of relaxation pro-
cesses allows simulation of realistic absorption in tissue, while use of the PML allows accurate
computations to be carried out using small grid sizes. As shown below, the combination of these
characteristics results in a powerful and flexible method for computation of ultrasonic propagation

over long distances in inhomogeneous media such as soft tissues.
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III. NUMERICAL METHODS

Numerical implementation of the present k-space method was accomplished using Eqgs. (26) di-
rectly. The k-space operators of Egs. (8) were evaluated using two-dimensional discrete Fourier
transforms, implemented using a fast Fourier transform (FFT) method.!”

Initial conditions were chosen to specify a pulsatile incident plane wave with sinusoidal time
variation and a Gaussian envelope. Boundary conditions were given by the perfectly-matched
layer (PML) on all sides of the grid. The absorption parameters o, and a,, were tapered within the
PML’s using formulas of the form'®

4
RN G Sat 2 b @7)
AX Xmax = X0

Qx
where xg is the coordinate at the inner edge of the PML, xnax is the coordinate at the outer edge of
the grid, and A4 is the maximum absorption per cell, in nepers, within the PML. A PML thickness
of 9 grid points, together with a maximum PML absorption 4 of 4 nepers per cell, were found to be
sufficient to reduce boundary reflection and transmission coefficients below —90 dB for normally-
incident waves.

Relaxation-process absorption was implemented using two relaxation processes. The param-
eters x; and r; were chosen to approximate a linear dependence of absorption on frequency over

the pulse bandwidth, using the formula for frequency-dependent absorption given in Ref. 8. The

relaxation times chosen were
1 2

= ’[2 =
Sfmax’ fmax,

where fimax is the nominal maximum frequency of interest. For a maximum frequency of 5 MHz,

(28)

7]

these are 77 = 40 ns and 7o = 400 ns. Given this choice of relaxation times, an absorption
frequency dependence of 0.5 dB/cm/MHz is best approximated (in a least-squares sense) for the
frequency range 0 < f < 5 MHz by the compressibility coefficients x; = 0.004749 x, and
Ky = 0.004562 k.

Benchmark computations analogous to those described in Ref. 6 were carried out to test the
accuracy and stability of the present k-space method. As in Ref. 6, time-domain scattered fields for
cylindrical test objects were computed and quantitatively compared to an exact solution!® using an
L2 error metric.2 The primary test object was, as in Ref. 6, a cylinder with radius 2.0 mm and
Hi

acoustic properties of human fat (¢ = 1.478 mm/us, p = 0.950 g/cm”)"* in a background medium

with acoustic properties of water at body temperature (¢ = 1.524 mm/us, p = 0.993 g/cm?). The
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incident pulse was a plane wave with Gaussian temporal characteristics, a temporal Gaussian pa-
rameter o = 0.25 us, which corresponds to a —6 dB bandwidth of 1.5 MHz, and a central starting
position of x = —4.5 mm at time zero. Time histories of the total pressure field were recorded,
at 128 equally-spaced “measurement” points spanning a circle of radius 2.5 mm concentric to
the cylinder, using the interpolation method described in Ref. 6. Another benchmark employed
the same configuration except that the cylinder had the density and sound speed of human bone
(c = 3.540 mm/us, p = 1.990 g/cm?).!!

In some cases, model media were smoothed before the computation to reduce errors associated
with aliasing caused by discontuities. Smoothing was applied by filtering analytic Fourier trans-
forms of the inhomogeneities considered using the half-band spatial-frequency filter described in
Ref. 6. This filter was found to give the most satisfactory results when applied to the quantities
Kkoo(r) and p(r)~#, where g is a small coefficient. The accuracy of computations was found not
to depend strongly on the value of # employed; the value # = 1/6 was used in the computations
reported here.

A specific test of the smoothing method was implemented by computing scattering from a
point (wire) scatterer with dimensions less than the grid resolution. The test object employed
in this case was a point scatterer with acoustic properties of human bone (¢ = 3540 m/s, p =
1.990 g/cm?) and a radius of 20 um. Computations were performed with a spatial step of Ax =
0.0833 mm (four points per nominal minimum wavelength of .333 mm) and a Courant-Friedrichs-
Lewy number (CFL = cpAt/Ax) of 0.1. For a k-space computation with smoothing, the model
medium was obtained by the spatial-frequency filtering procedure described above applied to the
analytic Fourier transform of the subresolution scatterer. For comparison, a computation using
a discrete single-point scatterer was also carried out. In this case, the scatterer sound speed and
density were decreased so that the compressibility contrast y, and the density contrast y, decreased
in proportion to the relative increase in area, which corresponds (for a scatterer of dimensions much
smaller than the wavelength) to constant scattering strength.!® For a scatterer area of 0.0833 x
0.0833 mm? (one grid point), this corresponds to a sound speed of 1.5897 mm/us and a density
of 1.0921 g/cm?. Computational configurations were the same as for the 2.0 mm radius cylinder
benchmarks, except that scattered fields (determined by subtracting the computed incident field
in the absence of the scatterer) instead of total fields were compared to the corresponding exact
solutions.

Implementation of relaxation absorption was tested in the k-space method by computing prop-
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agation of a plane-wave pulse in an absorbing medium. The pulse employed was a Gaussian-
modulated sinusoid with a temporal Gaussian parameter of 0.25 us. Propagation of this pulse
was computed for a medium with absorption of 0.5 dB/cm/MHz (parameters g, 71, ko, and x; as
given above), using a spatial step of Ax = 0.0833 mm (four points per nominal minimum wave-
length). Waveforms were recorded at virtual measurement locations separated by 5 mm along the
direction of propagation. The attenuation and for the computed propagation was determined nu-
merically as a function of frequency from the ratio of the two pulse spectra, while the phase speed
was determined numerically from the frequency-dependent phase change between the two pulses.
These computed values were then compared with theoretical values, given by formulas available
in Ref. 8.

An example computation, illustrating the performance of the present k-space method for large-
scale problems relevant to ultrasonic imaging, was undertaken using a model tissue-mimicking
phantom. This phantom is a 48 mm diameter cylinder (c = 1.567 mm/us, p = 1.040 g/cm?)
with two internal 10 mm diameter cylinders (¢ = 1.465 mm/us, p = 0.0940 g/cm?) and three
internal 0.2 mm diameter wires (¢ = 2.600 mm/us, p = 1.120 g/cm?®) in a background medium
with properties of water (¢ = 1.509 mm/us, p = 0.997 g/cm?). The 48 mm cylinder also
contained simulated random scatterers, implemented by applying a Gaussian random perturbation
with RMS amplitude 1% to the compressibility. The internal 10 mm cylinders and wires were not
perturbed in this manner. The incident plane wave had a center frequency of 2.5 MHz, a —6 dB
bandwidth of 1.7 MHz, and a propagation direction of 37° from the x axis, and was apodized using

the window

erf [5(¢ + w1/2 4 wy/2) /w)] — erf[5({ — w1/2 — wp/2)/w))

> 29)

A =

where erf is the error function and & is an azimuthal distance along the initial wavefront. This
window approximates a spatially-limited plane wave of the width w; with tapered ends of width
w,. The window parameters employed for this example were w; = 48 mm (the diameter of the
phantom) and w; = 6 mm. The grid size employed was 768 x 768 with a spatial step of 0.12 mm
and a time step of 0.02 us (CFL = 0.25 based on the background sound speed).
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IV. NUMERICAL RESULTS

The previous k-space method based on the second-order wave equation®>% has been shown in
Refs. 6 and 7 to provide high accuracy for weakly-scattering media. Spectral evaluation of spatial
derivatives provides much higher accuracy than typical finite difference methods for comparable
spatial steps. The k-t space iteration scheme of Ref. 2 provides unconditionally stable computa-
tions for media with c(r) < co® and allows large time steps to be employed while maintaining
accuracy higher than comparable pseudospectral methods.57

Not surprisingly, the k-space method described here, which is based on coupled first-order
wave propagation equations, has numerical properties very similar to those of the original k-space
method. Figures 3 and 4, similar to Figs. 2 and 3 of Ref. 6, show the time-domain L? error as a
function of the spatial and temporal sampling parameters. Figure 3, which shows computations
made using the 2.0 mm radius “fat” cylinder described above and a spatial step size of four points
per minimum wavelength, show that the present £-space method exhibits temporal accuracy almost
identical to the k-space method of Ref. 6. Figure 3 also shows that both k-space methods provide
much higher accuracy than a comparable pseudospectral method employing a leapfrog propagator
(described in Ref. 6). All three methods provide equivalent results for very small time steps (CFL
numbers less than about 0.1), but the k-space methods maintain high accuracy up to a CFL number
of about 0.4. In contrast, the pseudospectral method rapidly increases in error for CFL numbers
above 0.1.

The spatial accuracy of the present k-space method is compared to the previous k-space
method® and to a 2-4 finite-difference method!! in Fig. 4. Time-domain L? errors are shown,
for the 2.0 mm radius “fat” cylinder, as a function of the spatial step size (in points per wavelength,
based on a nominal minimum wavelength of 0.333 mm). For these computations, the CFL number
of the k-space computations was held constant at 0.5, consistent with the CFL-accuracy relation-
ship shown in Fig. 3, while the CFL number of the finite-difference computations was held at an
optimal value of 0.25.2! Again, the present k-space method yields accuracy almost identical to
that of the previous k-space method of Ref. 6. All three methods achieve high accuracy for finer
grid spacings; however, the k-space methods achieve higher accuracy for much larger spatial step
sizes. The L2 error drops below 0.05 for k-space computations employing only three points per
minimum wavelength, while achievement of the same accuracy criterion requires 14 points per

minimum wavelength for the finite-difference computations.
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Although the present k-space method and that of Ref. 6 yield nearly equivalent results for the
benchmark case illustrated in Figs. 3 and 4, the use of coupled first-order equations in the present
k-space method can provide greater accuracy for strongly-scattering media. These advantages
are illustrated using a benchmark computation for a 2 mm “bone” cylinder, introduced in Ref. 6.
Since computations became unstable in this case for CFL numbers above about 0.2 [comparable
to the theoretical upper stability limit of 0.2833 given by Eq. (12)], a CFL number of 0.1 was
employed for the benchmark. Simulated waveforms obtained using the present k-space method
and the previous k-space method of Ref. 6 are presented in Fig. 5 (computations carried out using
the method of Ref. 6 were identical to those described in Ref. 6 except that the CFL number
was reduced to 0.1.). Both before and after smoothing of the model medium, the present k-space
method achieves much higher accuracy than the previous method (L? error, relative to an exact
series solution, was 0.2292 vs. 0.3060 before smoothing; 0.0263 vs. 0.2687 after smoothing). In
addition, artifacts are greatly reduced in the computations employing the present k-space method.
The waveforms obtained using the present k-space method with smoothing [panel (b)] are visually
identical to those obtained from the exact series solution, shown in Ref. 6.

Further demonstration of the effectiveness of the present k-space algorithm, in conjunction with
the smoothing methods used here, is given by Fig. 6. This figure illustrates numerical results for
scattering from a bone-mimicking cylinder of sub-grid-resolution size (radius 0.02 mm [20 um]
compared to a spatial step of Ax = 0.0833 mm). The model medium obtained by smoothing this
subresolution cylinder results in a scattered amplitude that is nearly identical to the exact solution.
The corresponding discrete computation, which attempts to represent the subresolution scatterer
using a single pixel with adjusted acoustic parameters, accurately obtains the waveform shape and
delay, but incorrectly predicts the angle-dependent scattered amplitude. This result indicates that
the present k-space method, with smoothing of the kind used here, can accurately account for
structures with dimensions much smaller than the spatial step employed.

Results of the numerical test of relaxation absorption are illustrated in Fig. 7. Panel (a) shows
theoretical and simulated attenuation values, while panel (b) shows theoretical and simulated val-
ues of the phase speed. The simulations are for two sizes of the time step corresponding to
CFL = 0.25 and CFL = 0.5. The case with a smaller time step (CFL = 0.25) agrees very
well with the theory, while the case with a larger time step (CFL = 0.5, as employed in the soft-
tissue benchmark computations described above) shows good qualitative agreement. These results

illustrate that the present k-space method with relaxation absorption can realistically simulate at-
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tenuation caused by soft tissues even for relatively coarse time steps.

Numerical results for the tissue-mimicking phantom example, described in the previous sec-
tion, are illustrated in Fig. 8. This figure shows four snapshots of the spatially-limited plane wave
propagating through the phantom, causing coherent reflection from boundaries and wires as well
as incoherent scattering from the random structure within the background cylinder. Notable is
that smoothing of the medium has reduced any ringing artifacts to a level far below the low-level
random scattering within the cylinder. Also notable is that the use of PML absorbing boundary
conditions allows the computation shown to be performed efficiently (4063 CPU s on a 650 MHz
Athlon processor for a simulation of duration 360 us on a 768 x 768 grid). A hypothetical com-
putation without absorbing boundaries, in which the grid size would be expanded to eliminate
wraparound error within the region shown in Fig. 8, would require a grid size of approximately

4600 x 4600 points, resulting in a 35-fold increase in storage and computation time requirements.
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V. DISCUSSION

The starting point for the k-space method introduced here is the previous k-space method based on
the second-order wave equation.” Thus, a brief discussion of similarities and differences between
these two methods is appropriate.

The two methods show identical accuracy for homogeneous media, since they are mathe-
matically identical in this case. For weakly inhomogeneous media, both methods have simi-
lar performance in accuracy and stability. However, for stronger inhomogeneities such as the
bone-mimicking cylinder benchmark described here, the two k-space methods differ significantly.
The present method, based on the coupled first-order wave propagation equations, achieves much
higher accuracy, although numerical evidence suggests that the present method has a lower sta-
bility threshold than the method of Ref. 6. The increased accuracy of the present k-space method
for high-contrast media, relative to previous k-space methods based on second-order wave equa-
tions,® occurs for several likely reasons. Since the k-space method for coupled first-order propa-
gation equations can be written in a form involving no Fourier transforms of medium properties
[Eq. (10)], some aliasing errors may be eliminated. In addition, the coupled first-order equations
incorporate the density directly rather than within a derivative term, so that errors associated with
inaccuracies in discrete derivatives of the density are also reduced.

The two methods also differ somewhat in computation and storage requirements. The method
of Ref. 6 requires computation and storage of only one acoustic variable (the acoustic pressure
fluctuation), while the present method requires computation of the pressure fluctuation as well
as each vector component of the acoustic particle velocity fluctuation. Thus, for a constant grid
size, the present k-space method requires somewhat greater storage and computation time than the
method of Ref. 6. However, this difference is offset by the capability of the present k-space method
to incorporate PML absorbing boundary conditions. For large computations, the high performance
of the PML allows the grid size to be substantially reduced without introduction of wraparound or
boundary-reflection errors, so that the present k-space method is often more efficient for practical
problems. This advantage is potentially even more important for three-dimensional computations.

The present k-space method can also be compared with pseudospectral methods for coupled
first-order propagation equations (e.g., Refs. 12,13, and 16). Although both methods use Fourier
transforms to accurately evaluate the spatial first order derivative, the present k-space method

also includes temporal correction terms, which were obtained by factoring the second-order k-
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space operator of Eq. (7) into the first-order operators of Eqgs. (8). As a result, the present k-
space method utilizes two-dimensional Fourier transforms, while pseudospectral methods em-
ploy one-dimensional Fourier transforms for calculation of spatial derivatives. This difference
leads to a slight increase in computational requirements associated with Fourier transforms. Typ-
ically, pseudospectral methods require eight one-dimensional Fourier transforms per time step,
while the present k-space method requires seven two-dimensional Fourier transforms per time
step. However, the temporal correction provided by the k-space method eliminates the need for
higher-order time schemes such as Adams-Bashforth and Adams-Moulton iteration, so that the
k-space method may provide improved overall efficiency. This advantage occurs in part because
the k-space method can provide accurate results for larger time steps (higher CFL numbers) than
pseudospectral methods employing higher-order temporal iteration.”

Another advantage of the present k-space method is the close analogy between this method
and the standard finite-difference time-domain method of Ref. 15. The present k-space method is
algorithmically identical to the method of Ref. 15 except that second-order-accurate spatial deriva-
tives have been replaced by the k-space operator of Eqs. (8), which provides spectral accuracy
in space, exact temporal iteration for homogeneous media, and high accuracy for general media.
This close analogy has allowed relaxation absorption and PML’s, previously adapated to the corre-
sponding finite-difference method,’ to be straightforwardly incorporated into the present k-space
method. The analogy allows great improvements in the performance and accuracy of existing
finite-difference codes employing algorithms similar to those of Refs. 9 and 15 by the straightfor-

ward replacement of finite-difference spatial derivatives with the k-space operators of Egs. (8).
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VI. CONCLUSIONS

The present k-space method, which numerically solves the coupled first-order differential equa-
tions for wave propagation in inhomogeneous fluid media, has been shown to hold a number of
advantages for large-scale simulation of ultrasound-tissue interaction.

The method maintains the major advantages of previous k-space methods;® like those, the
present method is spectrally accurate in space, temporally exact for homogeneous media, and
highly accurate for modest medium variations. Furthermore, the form of the present method has
allowed it to be extended with PML absorbing boundary conditions, relaxation absorption, and
an effective approach to smoothing discontinuous scattering media. Since the present method can
be interpreted as a finite-difference method with correction terms, existing finite-difference codes
may be easily modified to take advantage of the accuracy available from the k-space method.

Numerical examples presented here have shown that the present k-space method has remark-
able accuracy and stability characteristics, similar to previous k-space methods,5 for computations
involving weakly scattering media. The method, together with the smoothing approach presented
here, provides higher accuracy for strongly scattering media. Since k-space methods allow highly
accurate results to be obtained using coarse spatial and temporal sampling, the present k-space
method, with the incorporation of PML absorbing boundary conditions and relaxation absorption,
is particularly well-suited to realistic large-scale simulations for applications including ultrasonic

imaging studies.
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FIGURE CAPTIONS

Characteristics of discrete spatial derivative operators. (a) Sampling locations for
spatially-staggered grid. (b) Spatial-frequency response of first-derivative opera-
tors: (1) nonstaggered grid; (ii) staggered grid; (iii)ideal. . . ... ... ... ...
Characteristics of discrete time derivative operators. (a) Time-staggered sampling
for acoustic pressure and particle velocity. (b) Derivatives estimated using a non-
staggered time scheme and true derivatives evaluated at the center of the time step.
Time-domain comparison of accuracy for the k-space and leapfrog pseudospectral
methods as a function of CFL number. Each test used the “fat” cylinder of 2.0 mm
radius and a spatial step size of four points per minimum wavelength. . . ... ..
Time-domain comparison of accuracy for the k-space and 2-4 finite-difference
time-domain methods as a function of the spatial step size in points per mini-
mum wavelength (PPW). Each test used the “fat” cylinder of 2.0 mm radius. CFL
numbers were 0.5 for the k-space methods and 0.25 for the finite-difference time-
domainmethod. . . . . . .. ...
Computed pressure waveforms at a receiver radius of 2.5 mm for a “bone” cylinder
of radius 2.0 mm and a pulse center frequency of 2.5 MHz. The acoustic pressure is
shown on a bipolar logarithmic scale with a 60 dB dynamic range. The horizontal
range of each plot is 360 degrees, covering the entire measurement circle starting
with angle 0 (forward propagation). The vertical range of each panel corresponds
to a temporal duration of 9 us, with ¢ = 0 at the top of each plot. (a) Unsmoothed
object; present k-space method, L? error 0.2292. (b) Smoothed object; present k-
space method, L2 error 0.0263. (c) Unsmoothed object; previous k-space method,®
L? error 0.3060. (d) Smoothed object; previous k-space method,® L2 error 0.2687.
Simulated scattering from a point (wire) scatter with radius 20 ym and acous-
tic properties of human bone. Each plot shows results for an exact series solu-
tion, a k-space solution using a half-band filtered representation of the subresolu-
tion scatterer (“smoothed”), and a single-pixel representation with equal scattering

strength. (a) Backscattered signals. (b) RMS waveform amplitudes. . . ... ...
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Attenuation and phase speed for propagation of a pulse in a medium with two re-
laxation processes. Each panel shows theoretical values® and values obtained using
the present k-space method for two values of the CFL number. (a) Frequency-
dependent attenuation. (b) Frequency-dependent phase speed. . . . . .. .. ...
Computed pressure fields for a 48 mm diameter tissue-mimicking phantom. Panels
(a)—(d) show the total acoustic pressure at intervals of 12 us, superimposed on
an image of the phantom. The area shown in each panel is 61 mm x 61 mm.

Wavefields are plotted using a bipolar logarithmic scale with a dynamic range of
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Figure 1: Characteristics of discrete spatial derivative operators. (a) Sampling locations for

spatially-staggered grid. (b) Spatial-frequency response of first-derivative operators: (i) nonstag-
gered grid; (ii) staggered grid; (iii) ideal.
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Figure 2: Characteristics of discrete time derivative operators. (a) Time-staggered sampling for
acoustic pressure and particle velocity. (b) Derivatives estimated using a nonstaggered time scheme
and true derivatives evaluated at the center of the time step.
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Figure 3: Time-domain comparison of accuracy for the k-space and leapfrog pseudospectral meth-
ods as a function of CFL number. Each test used the “fat” cylinder of 2.0 mm radius and a spatial
step size of four points per minimum wavelength.
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Figure 4: Time-domain comparison of accuracy for the k-space and 2-4 finite-difference time-
domain methods as a function of the spatial step size in points per minimum wavelength (PPW).
Each test used the “fat” cylinder of 2.0 mm radius. CFL numbers were 0.5 for the k-space methods
and 0.25 for the finite-difference time-domain method.
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Figure 5: Computed pressure waveforms at a receiver radius of 2.5 mm for a “bone” cylinder of
radius 2.0 mm and a pulse center frequency of 2.5 MHz. The acoustic pressure is shown on a
bipolar logarithmic scale with a 60 dB dynamic range. The horizontal range of each plot is 360
degrees, covering the entire measurement circle starting with angle 0 (forward propagation). The
vertical range of each panel corresponds to a temporal duration of 9 us, with ¢ = 0 at the top of
each plot. (a) Unsmoothed object; present k-space method, L? error 0.2292. (b) Smoothed object;
present k-space method, L? error 0.0263. (c) Unsmoothed object; previous k-space method,® L?
error 0.3060. (d) Smoothed object; previous k-space method,® L2 error 0.2687.
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Figure 6: Simulated scattering from a point (wire) scatter with radius 20 xm and acoustic prop-
erties of human bone. Each plot shows results for an exact series solution, a k-space solution
using a half-band filtered representation of the subresolution scatterer (“smoothed”), and a single-
pixel representation with equal scattering strength. (a) Backscattered signals. (b) RMS waveform

amplitudes.
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Figure 8: Computed pressure fields for a 48 mm diameter tissue-mimicking phantom. Panels
(a)—(d) show the total acoustic pressure at intervals of 12 us, superimposed on an image of the
phantom. The area shown in each panel is 61 mm x 61 mm. Wavefields are plotted using a bipolar
logarithmic scale with a dynamic range of 60 dB.
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Abstract: Previously published summaries of sound speed, density, attenu-
ation coefficient, and nonlinearity parameter, B/4, in human soft tissues are
quantitatively analyzed. A highly significant empirical linear relationship is
found to hold between sound speed and density for a wide range of soft tis-
sues, including adipose, parenchymal, muscular, and connective tissues as
well as body fluids. Even higher correlations occur between nondimensional
parameters describing density variations and compressibility variations. Val-
ues for the nonlinearity parameter correlate significantly with sound speed
and density, while the attenuation coefficient is found not to correlate signif-
icantly with any of the other parameters considered. Implications for tissue
modeling and quantitative ultrasonic imaging are discussed.
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Introduction

Understanding relationships between acoustic parameters of human soft tissues is important
for several reasons, including scientific interest in tissue properties, accuracy in simulation of
acoustic propagation in tissues, and effectiveness in design and interpretation of quantitative
ultrasonic imaging methods.

Simulations of ultrasonic propagation in tissue require choices for acoustic properties such
as sound speed, density, absorption, and nonlinear propagation characteristics. Previous re-
search has resulted in simple empirical relationships between sound speed and density for com-
pact calcified tissues [Lees et al., 1983] and a range of mammalian soft tissues [Aroyan, 1996].
These relationships are useful for tissue modeling; for example, the linear sound speed-density
relationship observed by Lees et al. [1983] was used by Mast et al. [1999] to estimate the sound
speed of calcified cartilage based on a density measurement. Aroyan [1996] used a similar
piecewise-linear relationship to obtain three-dimensional maps of sound velocity in dolphin tis-
sue, based on density maps estimated from computed tomography image data. To the extent
possible, corresponding relationships between attenuation, nonlinearity parameter, and other
acoustic parameters would also be useful for construction of tissue models.

Quantitative ultrasonic imaging methods such as diffraction tomography [Mast, 1999 and
references therein] provide images of intrinsic tissue properties such as sound speed, density,
compressibility, and absorption. The diagnostic efficacy and utility of such methods would be
improved by a greater knowledge of the relationships between tissue parameters. For instance,
if two parameters, such as sound speed and density, are highly correlated with one another for
all tissue structures in the human body, measurement or imaging of both parameters will be of
little diagnostic value. Analysis of correlation between tissue parameters would allow ultrasonic
imaging methods to be designed for maximum diagnostic information content.

Tissue Properties

Reference sound speed, mass density, attenuation, and nonlinearity properties for a variety of
human soft tissues were compiled from three secondary sources, each of which drew on many
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Table 1: Sound speed, density, attenuation, and nonlinearity parameter values used for analysis. Sources:
'Mast et al., 1997, 2ICRU Report 61, 1998, 3Duck, 1990.

Tissue Speed Density  Atten. Coef. @ Nonlin.
Type (mm/us)  (g/em®) 1MHz(dB/cm) Param. (B/4)
Connective! 1.613 1.120 1.57 —
Muscle! 1.547 1.050 1.09 —
Fat! 1.478 0.950 0.48 —_
Adipose? 1450  0.950 0.29 10.0
Blood? 1.584 1.060 0.20 6.1
Brain® 1.560 1.040 0.60 7.1
Breast? 1.510 1.020 0.75 —
Eye: lens? 1.645 1.070 0.80 —
Eye: vitreous® 1.528 1.010 0.1 —
Kidney? 1.560 1.050 1.0 7.4
Liver? 1.595 1.060 0.50 6.6
Muscle, cardiac? 1.576 1.060 0.52 7.1
Muscle, skeletal? 1.580 1.050 0.74 6.6
Skin? 1.615 1.090 0.35 7.9
Fatty? 1.465 0.985 0.40 8.5
Non-fatty? 1.575 1.055 0.60 7.0
Blood cells® 1.627 1.093 0.28 —_
Blood plasma? 1.543 1.027 0.069 —
Eye: cornea’ 1.586 1.076 — —
Spinal cord? 1.542 1.038 — —
Spleen® 1.567 1.054 0.4 7.8
Testis? 1.595 1.044 0.17 —
Mean 1.561 1.043 0.54 7.5
St. Dev. 0.051 0.042 0.37 1.1

previously published measurements. Reference values for fat, muscle, and connective tissue
were obtained from Mast et al. [1997], which summarized data from Goss et al. [1978; 1980b],
and Woodard and White [1986]. Attenuation coefficients reported there were extrapolated to
1 MHz values assuming linear frequency dependence. Reference values for nine soft tissue
types (adipose tissue, whole blood, brain, breast, liver, skeletal muscle, skin, “average” fatty
soft tissue, and “average” non-fatty soft tissue), as well as for four specific tissues (kidney,
cardiac muscle, eye—lens, and eye—vitreous), were taken from ICRU Report 61 [1998]. For
the latter four tissues, values used here are means of the upper and lower limits presented in the
report.

Parameters for five additional human soft tissues, not addressed in the above summaries,
were compiled from values given by Duck [1990]. In all cases, only values measured on hu-
man tissues were employed. Sound speed values employed were only those measured at body
temperature (37° C) or in vivo. When more than one listed sound speed measurement met those
criteria, all available values for adult human tissue were averaged; when ranges were given,
means of the upper and lower limits were taken. Density values were taken to be the mean of
mass density ranges given by Duck. Attenuation coefficients, when necessary, were extrapo-
lated to 1 MHz assuming a linear dependence of attenuation on ultrasonic frequency.

The compiled sound speed, density, attenuation, and nonlinearity parameter data are listed
in Table I.

In addition to the four acoustic properties listed in Table I, two other parameters of particular
interest are the compressibility variation y, and the density variation y,, defined as
=2% g =122, (1)
where ¢ and p are local values of sound speed and density, and ¢, and p, are reference values,
taken here to be the mean sound speed and density values from Table I. These parameters are
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Figure 1: Pairs of acoustic properties for human soft tissues, plotted with corresponding lines of best fit.

convenient for scattering analyses. For example, the far-field pattern of fixed-frequency acoustic
scattering from a fluid medium, under the Born approximation, is described by the equation
[Morse and Ingard, 1968]

' .
oI —-0) = y / (yx (o) + 7,(ro) cos ) -0 av;, )
v

where I and O are vectors with magnitudes equal to the wavenumber & and directions equal to
the propagation direction of the incident wave and the measurement direction of the scattered
wave, respectively, and ¥ is the angle between the vectors I and O. Many quantitative acoustic
imaging methods have been devised to separately map y, and y, or closely related quantities
[e.g., Devaney, 1985; Witten et al., 1988; Mensah and Lefebvre, 1997].

Empirical Relationships

In order to quantitatively analyze relationships between the four abovementioned parameters for
human soft tissues, linear regression analysis was performed on all of the summary data listed
in Table I. A regression between the nondimensional compressibility variation y, and density
variation y, was also performed. In each case, linear relationships of the form
y=(mx+b)to 3)
were obtained, where m is the slope, b is the intercept, and the standard deviation ¢ is com-
puted from the difference between the measured parameters and the line of least-squares fit.
To assess the significance of each correlation, the Pearson correlation coefficient » (bounded
between —1 and 1) and the corresponding p-values (i.e., the probability of a correlation coef-
ficient with magnitude equal to or greater than » occurring by chance [Bevington, 1969]) were
also computed. A typical significance criterion is, for instance, p < 0.05.
Values from Table I are plotted in Fig 1 for four parameter pairs, together with the cor-
responding least-squares linear fit from Eq. (3). The correlation coefficients and p-values in
Table 1, as well as the corresponding plots in Fig. 1, provide clear indications of correlations
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Table 2: Results of least-squares linear regressions between acoustic properties of human soft tissue.

Acoustic Slope Intercept Correlation  St. Dev. p-value
Properties m b Coefficient o
(c,p) 1.12 0.391 0.917 0.0203 2.03x 107°
(a, p) 3.38 ~2.98 0.393 0.341 0.0869
(B/4,p) —21.18 2952 —-0.771 0.687  5.47 x 1073
(a,c) 1.50 —1.80 0.214 0.362 0.364
(B/4,¢) —16.58 33.28 —0.795 0.654 3.44 x 1073
(a, B/4A)  —0.0563 0.929 -~0.271 0.216 0.421
(x> ¥p) -2.58 0.00313 —0.972 0.0260 5.61 x 1071

between acoustic properties of human soft tissues. As seen in Fig. 1(a), sound speed and den-
sity are closely correlated for human soft tissues (» = 0.9168, p =2.03 x 107°). The corre-
sponding nondimensional parameters y, and y, are correlated even more closely (r = 0.9715,
p = 5.61 x 107"*). The nonlinearity parameter B/4 correlates significantly with the sound
speed and density (p=3.44 x 107> and 5.47 x 1073, respectively) but not with the attenuation
coefficient (p = 0.421). The attenuation coefficient does not correlate highly with any of the
other parameters considered, although its correlation with mass density might be considered
marginally significant (p =0.0869).

Discussion

An obvious question is the physical cause of the empirical linear relationships shown here to
exist between acoustic parameters in human soft tissues. These relationships are not physically
fundamental to propagation in fluid or solid media. The most likely causes of the nearly linear
relationship between sound speed and density are the relative proportions of tissue constituents
such as proteins, lipids, and water. Since the bulk acoustic properties of tissue are fairly well-
characterized by mixture laws [Apfel, 1986; Sehgal et al., 1986; Hachiya and Ohtsuke, 1994],
it seems reasonable to conclude that the present empirical linear relationships relate straight-
forwardly to tissue composition. Proteins such as collagen have a sound speed and density
higher than water [Goss and Dunn, 1980], so that tissues with higher concentrations of collagen
and other proteins have relatively higher density and sound speed [O’Brien, 1977; Goss et al.,
1980a; Olerud et al., 1990]. Similarly, lipids have lower sound speeds and density than water,
so that tissues with greater fat content have relatively lower sound speeds and densities.

For the limited data set available, the present study shows that the nonlinearity parameter
B/A is significantly correlated with the sound speed and density of tissue. This relationship is
consistent with previous results showing that the nonlinearity parameter can also be predicted
using mixture laws [Apfel, 1986; Sehgal et al., 1986]. The weakly linear (marginally signifi-
cant) relationship between attenuation coefficient and density found here is also consistent with
a previous study, which showed that in canine skin and wound tissue the correlation between
attenuation coefficient and collagen content was substantially smaller than the correlation be-
tween sound speed and collagen content [Olerud et al., 1990].

In modeling soft tissues, one may be concerned with point-to-point variations within tissues,
as well as bulk properties of individual tissue types. The present study does not present direct
evidence that the acoustic properties considered are linearly related except as bulk properties.
However, any local variations in soft tissue properties are likely to be primarily caused by local
variations in tissue composition, which should cause corresponding sound speed and density
variations similar to those for bulk tissue. Likewise, acoustic parameters of other soft tissues,
such as malignant tumors, may be expected to follow similar empirical relationships.

The results presented here should be useful for computational modeling of acoustic propa-
gation in human soft tissues. For example, Borup et al. [1992] obtained model maps of tissue
structure by processing two-dimensional x-ray computed tomography and magnetic resonance
images of a human torsos, assigning values of a sound speed contrast function based on an as-
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sumed linear relationship to the image gray level. The empirical linear relationships between
the parameters presented here in Table I could be employed to assign density variations, nonlin-
earity parameter variations, and absorption values consistent with those sound speed variations,
thus resulting in a more realistic model.

In addition, sound speed can be difficult to measure accurately for certain small or fragile
tissue structures, such as the thin septa that separate fat lobules within adipose tissue. However,
density of any tissue structure can easily be determined in vitro using Archimedes’ principle.
The empirical relationships given here, like those presented by Lees et al. [1983] for calcified
tissues, allow estimates of sound speed to be obtained from measurements of density.

Finally, the present results have implications for development of quantitative ultrasonic
imaging methods. First, inversions yielding acoustic parameters such as the sound speed vari-
ation ¢?/c? — 1 (which is nearly equal to y, + v,) [e.g., Borup et al., 1992; Mast, 1999] or the
reflectivity function y, — y, [e.g., Norton and Linzer, 1980; Mensah and Lefebvre, 1997] can
be employed to obtain maps of more intuitive quantities such as the density and compressibil-
ity. Second, the results suggest that for human soft tissues little additional information may
be gained by techniques that independently image density variations and compressibility vari-
ations. The high correlation coefficient found here between y, and y, implies that separate
images of compressibility and density variations in soft tissue should be expected to be highly
correlated. Similarly, separate images of sound speed and density may provide little additional
information compared to either individual image. This conclusion is consistent with experimen-
tal results in which sound speed and density images of excised breast cross sections have been
found to be qualitatively similar and significantly correlated [Yang et al., 1991].

Additional information for quantitative images could come in several forms. One possibility
is quantitative imaging of the nonlinear parameter B/4 [e.g., Cain, 1986; Burov et al., 1994];
however, the significant correlations found here between nonlinearity parameter, sound speed,
and mass density suggest that images of the nonlinearity parameter may provide limited addi-
tional information relative to that obtained from sound speed or density mapping. Still, since
the nonlinearity parameter was only available for eleven of the data points considered here, fur-
ther study would be required to definitively assess correlations between B/A and other acoustic
parameters of soft tissues.

The low correlation results between absorption and the other three parameters considered
imply that multiple-parameter images including absorption maps [e.g., Greenleaf and Bahn,
1981; Witten et al., 1988] may provide significant additional information beyond that obtained
from maps of other parameters alone. However, because of the wide range of absorption values
reported in the literature for most tissue types [Duck, 1990], the ultimate diagnostic value of
quantitative absorption imaging cannot be assessed based on the data considered here. Still,
the present results suggest that quantitative imaging techniques yielding maps of ultrasonic
absorption as well as sound speed, density, or nonlinearity parameter are worthy of further
study for medical diagnosis.
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APPENDIX I

Two- and three-dimensional simulations of ultrasonic
propagation through human breast tissue
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Abstract: Simulations of spherical-wave ultrasonic pulse propagation
through human breast tissue are presented. Breast tissue models were cre-
ated by processing of volumetric photographic data from the Visible Woman
project. Tissue types were empirically mapped to hue, saturation, and value
parameters of the photographic data; acoustic parameters of tissue were then
mapped using empirical linear relationships between mass density, sound
speed, and ultrasonic absorption. Computations of ultrasonic propagation
were performed in two and three dimensions using a k-space method incor-
porating tissue-dependent absorption and reduced-reflection boundary condi-
tions. The results show wavefront distortion effects similar to measurements
on breast tissue. Wavefront distortion is significantly more severe for the
three-dimensional simulations than for the two-dimensional simulations.
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PACS numbers: 43.80.Gx, 43.80.Qf, 43.20.Fn

Introduction

Direct simulation of ultrasound-tissue interaction is becoming a widespread tool for studies
of ultrasonic imaging and therapy.'? Continuous increases in computational power have made
possible simulations of large-scale models incorporating realistic tissue structure and direct nu-
merical solutions to the model equations. Ultrasonic propagation problems of interest typically
employ transient pulses and domains that span tens to hundreds of wavelengths, so that large
computational grids and fine temporal resolution are required. For these reasons, most pre-
vious investigations of ultrasonic propagation through tissue have employed two-dimensional
tissue models, which present small computation and storage requirements compared to three-
dimensional problems.*

This paper presents two- and three-dimensional simulations of propagation through breast
tissue continuum models. The three-dimensional simulations are feasible in part because of an
efficient implementation of the k-space method for computation of ultrasonic fields. * Realistic
tissue models are obtained by an automated segmentation scheme applied to three-dimensional
photographic data of the human female breast. Animations of three-dimensional propagation
show the cumulative development of distortion effects. Wavefront distortion statistics for the
three-dimensional simulations are computed and shown to be similar to experimental measure-
ments. Analogous two-dimensional computations, performed using the same breast tissue mod-
els, produce significantly lower distortion.

Breast Tissue Model

To obtain realistic three-dimensional (3D) models of human breast tissue, volumetric image
data was employed. The data set chosen was from the Visible Woman project, which includes
3D x-ray computed tomography (CT), magnetic resonance imaging (MRI), and photographic
data for an entire female cadaver. This data set is publically available and has been extensively
studied.’ Although computed tomography data provides a firm basis for models of acoustic




properties,® and similar modeling may be possible using MRI data, the CT and MRI data from
the Visible Woman data set are of insufficient (about 1 mm) resolution for simulations of ul-
trasonic propagation. The volumetric photographic data, which was obtained by photographing
the cadaver layer-by-layer, has a uniform voxel size of (1/3 mm) 3, which was judged adequate
for the present simulations.

To map the photographic data to tissue properties, an empirical continuum model was de-
veloped. The basis for this model was manual sampling of hue, saturation, and value (HSV)
parameters of the photographic data for regions containing fatty, connective, and parenchymal
(glandular) tissue. Empirically estimated HSV values for each tissue type were incorporated
into continuous mapping rules that provided smooth transitions between different tissue regions.

The rules employed are summarized as follows, in the order applied. First, to account for
slice-to-slice variations in lighting and cut quality, the HSV maps of each slice were normalized
so that their mean values matched the mean HSV values for the surrounding 17-slice (5.67 mm)
region. The segmentation rules were then applied as follows, where H, S, and V are hue,
saturation and value maps bounded by 0 and 1 and W, P, and C are local fractions of water,
parenchymal tissue, and connective tissue. (Unmarked tissue is identified as fat.)

1. Mark exterior by hue and value: W = 1 — [u(0.4 — H) + u(H — 0.8)] + u(0.1 = V).
2. Mark parenchyma based on value threshold: P = (1 — W) u(0.67 7).

3. Mark connective tissue based on saturation threshold: C = (1 — W) u(S — 0.45) — P.
(Set to zero where C < 0.)

4. Compute sound-speed map: ¢ = cr + (co—cr)W + (cp — cr)P + (cc — cr)C.

In the above algorithm, u is a smoothed step function defined as

I 0.5—0.5 cos[z(x +€)/(2¢)], —€ <x <€

u(x) =10, x <—¢ 1)

L L x>e
where the parameter ¢ employed here was 0.1. The sound speed values employed were, in
mm/us, cp = 1.478 (fat), co = 1.524 (water), cp = 1.547 (parenchymal/glandular), and cc =
1.613 (connective). Values of mass density and absorption were determined using empirical
linear relations®’ based on fits to nominal tissue parameter values:'

p=143¢—118, a=07lc—1.01, 2)

where the mass density p is in g/cm? and the absorption a corresponds to that defined in Ref. 8.
The corresponding absorption in dB/mm is approximately a/(2c) 20 log , (e)-

Although the resulting volumetric maps are likely not to be as accurate as maps determined
from CT data® or as manually segmented maps,"® the tissue maps obtained using the rules
described above were judged sufficiently realistic for the present simulations. As shown below,
the maps produce distortion comparable to measurements on breast tissue specimens.

Computational Methods

Spherical-wave pulse propagation through the breast tissue models were computed using the
k-space method.* This method directly solves the second-order linear acoustic wave equation
for media with variable sound speed and density, and allows high accuracy to be obtained using
relatively large temporal and spatial steps compared to other numerical methods. *° Tissue-
dependent absorption was incorporated using the Maxwell solid model described in Ref. 8,
which results in frequency-independent absorption. Limited-reflecting boundary layers were
incorporated using tapered absorption functions at each boundary:

a{x/L) = Oy [0.375 — 0.5 cos(rx /L) + 0.125 cos(2zx /L)1, 3)

where x is the perpendicular distance within the absorbing layer of length L, taken here to be
20 pixels (2.22 mm), and @ m,, is the maximum absorption coefficient within the layer, taken




to be 16. Since the severity of absorption discontinuties is known to be directly related to the
magnitude of spurious reflections,® the taper function of Eq. (3) was chosen so that both the
first, second, and third spatial derivatives of the absorption are zero at the inner edge of each
absorbing layer. Otherwise, the k-space method employed was as described in Ref. 4.

Fourteen cubic volumes of breast tissue were modeled from the Visible Woman data us-
ing the segmentation method described above. Each segmented volume was 60 voxels, or
(20 mm)*. Fourier interpolation, performed simultaneously with a Gaussian low-pass filtering
operation, was used to oversample the segmented volumes by a factor of three in each direction,
so that the inhomogeneous region of the grid spanned 1802 voxels. Computations were then
performed on a 240 x 240 x 240 grid (240 x 240 for the 2D case) with a uniform voxel size of
0.111 mm. A spherical-wave source was simulated by adding the source distribution

q(r,t) = g~ Irrolt/Qal) o= (=10Y/ Qo) sin(2 fot) )

to the wavefield at each time step, where the source position r was centered at a position 0.7 mm
below the lower boundary of the inhomogeneous region, the spatial Gaussian parameter o , was
0.1 mm, the temporal Gaussian parameter ¢, was 0.5 us, and the center frequency f, was
2.5 MHz. A time step of 0.0364 us, corresponding to a Courant-Friedrichs-Lewy number of
0.5, was employed in all cases. On an 650 MHz Athlon workstation with 768 MB of random-
access memory, each three-dimensional computation took about 3.2 h.

Simulated wavefields were received by an 18 x 18 element aperture, with square elements at
a pitch of 0.72 mm, centered 0.8 mm above the upper boundary of the inhomogeneous region.
Waveforms for each simulated element were computed by integration of the received pressure
with a step size of 0.18 mm. The pressure at each point was determined using a sinc-Kaiser
interpolation method.*

The received waveforms were analyzed for wavefront distortion effects using previously
established methods.!! Before processing, wavefields were compensated for geometric delay
and amplitude variations. Arrival time fluctuations were computed by cross-correlation of each
waveform with a reference waveform obtained by summing all waveforms in the aperture af-
ter geometric compensation. The peak of each cross-correlation function was found from the
zero crossing of the derivative of the cross-correlation envelope, computed using second-order
accurate finite differences.

Waveforms were compensated for the computed arrival time fluctuations, centered in a win-
dow of length 5.8 s, and Hanning windowed. Energy level fluctuations were then computed
from the squared sum of each waveform in dB units. To account for any effects due to element
directivity, distortion maps from an analogous computation in a homogeneous medium were
subtracted from the computed maps. A waveform similarity factor'' was also computed: this
factor is a generalized cross-correlation coefficient that is equal to 1 when all waveforms in the
aperture are identical.

To allow comparison of distortion effects for 2D and 3D propagation, 2D computations were
carried out 18 times for each cubic inhomogeneity, corresponding to the 18 elevation positions
of the receiving array from the 3D computations. All other processing was identical for the 2D
cases, except that geometric corrections were based on the 2D geometry and that average arrival
time and energy level fluctuations for each elevation were removed before statistical evaluation.

Results

Example breast tissue maps and propagation animations are shown in Fig. 1 for two rep-
resentative model volumes. Each of the propagation animations shows the cumulative devel-
opment of arrival time, energy level, and waveform distortion as wavefronts interact with in-
homogeneities in the breast tissue. Volume 8 contains a mixture of fat, connective tissue, and
parenchyma, and the propagation animations show large-scale arrival-time distortion as well as
some waveform and energy-level distortion. Volume 10, which contains mainly fat and denser




Figure 1: Visualizations of 3D breast models and propagation. Each panel contains a translucent image of
the sound speed map for the entire model volume, with cyan representing fat, medium blue representing
parenchymal tissue, and dark blue representing connective tissue. Mm. 1 (a) fly-through rendering of
breast model volume 8 (587 kb) [fly8.mpg]. Mm. 2 (b) Horizontal slices of the 3D pressure field, shown
on a bipolar logarithmic scale with a 65 dB dynamic range, and sound speed map for vol. 8 (226 kb)
[hor8.mpgl. Mm. 3 (c) Vertical slices of pressure and sound speed for vol. 8 (244 kb) [ver8.mpg]. Mm. 4
(d) Isosurface renderings of the pressure field for vol. 8 (587 kb) [ver8.mpg]. Mm. 5 (e) fly-through, vol. 10
(582 kb) [fly10.mpg]. Mm. 6 (f) Horizontal slices, vol. 10 (227 kb) [hor10.mpg]. Mm. 7 (g) Vertical
slices, vol. 10 (235 kb) [ver10.mpg]. Mm. 8 (h) Isosurface renderings, vol. 10 (231 kb) [iso10.mpg].
(http://www.placeholder.net/msxxx/)
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Figure 2: Summarized distortion statistics for 3D and 2D computations using 14 model breast volumes.
The box heights represent the means of each statistic while the error bars span +1 standard deviation. (a)
rms arrival time fluctuations. (b) rms energy level fluctuations. (c) Waveform similarity factors.

connective tissue, produces more severe waveform and energy-level distortion due to interfer-
ence between the main wavefront and waves scattered by connective tissue structures.

Computed 2D and 3D wavefront distortion statistics for the 14 model volumes are shown in
Table I and summarized in Fig 2. These statistics indicate that, for a given medium model, 3D
propagation produces significantly more wavefront distortion than 2D propagation. In almost all
cases, each of the three statistics employed indicates greater distortion for the 3D computation.
Also, for all three statistics investigated, the overall mean for 2D computation is about one
standard deviation different from that for the 3D computation, in the direction indicating higher
distortion. For an estimate of the significance of this result, one may note that, for a normally
distributed variable with standard deviation ¢ and N = 14, a mean value ¢ > o occurs with a
probability of less than 107,

The distortion seen for the 3D simulations qualitatively agrees with previous measurements
of wavefront distortion caused by breast tissue in vitro. In Ref. 12, mean distortion statistics
found for 9 breast specimens included a mean rms arrival time fluctuation of 66.8 ns, a mean
rms energy level fluctuation of 5.03 dB, and a mean waveform similarity factor of 0.910. The
statistics are not expected to be precisely comparable, however, since the experiments of Ref. 12
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Table I: Wavefront distortion statistics for 3D and 2D simulations using 14 breast model volumes. Shown
are the mean rms arrival time fluctuations (ATF), rms energy level fluctuations (ELF), and waveform
similarity factors (WSF) for each volume, as well as overall means p and standard deviations ¢ for each
statistic. Volumes containing significant fractions of parenchymal tissue are denoted by asterisks.

Vol. 3D rms ATF 3D rms ELF 3D WSF 2D rms ATF 2D rms ELF 2D WSF

(ns) (dB) (ns) (dB)
1 74.2 2.74 0.840 50.8 2.07 0.930
2* 56.8 1.85 0.946 45.7 1.48 0.962
3 64.0 2.55 0.920 356 1.44 0.969
4 40.0 1.64 0.931 284 1.09 0.977
5 74.2 2.74 0.840 439 239 0.911
6* 46.8 1.95 0.943 31.1 1.29 0.971
7 428 1.94 0.943 355 1.22 0.971
8" 85.2 3.59 0.881 424 1.82 0.945
9* 73.3 1.90 0.938 70.3 1.43 0.961
10 96.7 4.44 0.789 81.7 3.52 0.888
11" 65.0 2.38 0.920 42.6 1.46 0.966
12 58.5 2.31 0.872 429 2.10 0.939
13 84.6 3.75 0.876 58.7 2.09 0.950
14 50.2 2.01 0.893 69.6 2.13 0.938

puEto 6524171 256083 0.895+£0.048 485+£159 1.82+0.64 0.949+0.026

employed a higher-frequency, wider-band pulse (center frequency 3.75 MHz, —6 dB bandwidth
2.2 MHz) than the simulations reported here.

Discussion

The computations reported here show the feasibility of large-scale three-dimensional simu-
lations of ultrasonic propagation through tissue. These simulations relied on an implementation
of the k-space method that solves the second-order wave equation for the acoustic pressure. For-
mulations which solve coupled first-order propagation equations, including a recent adaptation
of the k-space method, ' require storage of more independent variables, but allow incorporation
of desirable features including relaxation-process absorption and perfectly-matched-layer ab-
sorbing boundary conditions. Such methods may, given sufficient computing power, be prefer-
able for three-dimensional simulations.

The continuum tissue model introduced here was based on three-dimensional photographic
data. Although the 3D computations employing this model produce realistic propagation ef-
fects, comparable to measured wavefront distortion, the subjectivity required to establish the
tissue-mapping rules is a disadvantage. Alternative imaging methods such as 3D x-ray com-
puted tomography produce volumetric data quantitatively related to tissue properties. ¢ Model
development using 3D CT has proven useful in lower-frequency simulations of propagation
through tissue,® and given sufficiently high spatial resolution would be ideal for models of ul-
trasonic propagation.

Substantially higher distortion was observed here for the three-dimensional computation
than for the two-dimensional computations. This result suggests that three-dimensional prop-
agation and scattering effects, such as spherical spreading of secondarily scattered wavefronts,
are important aspects of ultrasonic wavefront distortion in tissue. Thus, simulations of ultra-
sonic imaging and therapy that employ two-dimensional tissue models are likely to underesti-
mate the degrading effects of tissue on focus and image quality. As 3D computations become
more feasible, direct simulations of ultrasonic wavefields should become correspondingly more
realistic and more useful as a basic tool for medical ultrasound research.




Acknowledgments

This research was funded by the Breast Cancer Research Program of the U.S. Army Medical
Research and Materiel Command, under Grant No. DAMD17-98-1-8141. Any opinions, find-
ings, conclusions, or recommendations expressed in this publication are those of the author and
do not necessarily reflect the views of the U.S. Army. Discussions with Laura Hinkelman, Leon
Metlay, and Makoto Tabei are acknowledged with pleasure.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(%]

[10]

(]

[12]

(13]

T. D. Mast, L. M. Hinkelman, M. J. Orr, V. W. Sparrow, and R. C. Waag, “Simulation of ultra-
sonic pulse propagation through the abdominal wall,” J. Acoust. Soc. Am. 102, 1177-1190 (1997).
[Erratum: J. Acoust. Soc. Am. 104, 1124-1125 (1998).]

G. Wojcik, B. Fornberg, R. Waag, L. Carcione, J. Mould, L. Nikodym, and T. Driscoll, “Pseudospec-
tral methods for large-scale bioacoustic models,” Proc. [EEE Ultrason. Symp. 1997, 2, 1501-1506
(1997).

I. M. Hallaj and R. O. Cleveland, “FDTD simulation of finite-amplitude pressure and temperature
felds for biomedical ultrasound,” J. Acoust. Soc. Am. 105, L7-L12 (1998).

T. D. Mast, L. P. Souriau, D.-L. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method
for large-scale models of wave propagation in tissue,” IEEE Trans. Ultrason., Ferroelect., Freq.
Contr. 48, 341-354 (2001).

M. J. Ackerman, “The Visible Human Project: a resource for anatomical visualization,” Medinfo 9,
1030-1032 (1998).

J. L. Aroyan, “Three-dimensional modeling of hearing in the common dolphin,” J. Acoust. Soc.
Am., accepted (2001).

T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” Acoustics
Research Letters Online 1, 37-42 (2000).

T. D. Mast, L. M. Hinkelman, L. A. Metlay, M. J. Orr, and R. C. Waag, “Simulation of ultrasonic
pulse propagation, distortion, and attenuation in the human chest wall,” J. Acoust. Soc. Am. 106,
3665-3677 (1999).

J. C. Mould, G. L. Wojcik, L. M. Carcione, M. Tabei, T. D. Mast, and R. C. Waag, “Validation of
FFT-based algorithms for large-scale modeling of wave propagation in tissue,” Proc. IEEE Ultrason.
Symp. 1999, 15511556 (1999).

R. Kosloff and D. Kosloff, “Absorbing boundaries for wave propagation problems,” J. Comp. Phys.
63, 363-376 (1986).

D.-L. Liu and R. C. Waag, “Correction of ultrasonic wavefront distortion using backpropagation
and a reference waveform method for time-shift compensation,” J. Acoust. Soc. Am. 96, 649660
(1994).

L. M. Hinkelman, D.-L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction
of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am. 97, 1958-1969
(1995).

M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic propaga-
tion equations,” J. Acoust. Soc. Am, submitted.




APPENDIX J

Deconvolution of Scattered Acoustic Fields
for Ultrasonic Imaging

James F. Kelly
Mathematics Honors Program
Applied Research Laboratory

The Pennsylvania State University

July 2, 2001




1 Introduction

1.1 Background

Ultrasound imaging of human tissue has found widespread clinical application. However,
the diagnostic usefulness of such images is limited by poor spatial resolution, low contrast
between different tissue structures, sensor noise, and image artifacts (such as blur and speckle
introduced by emitted pulse). Physical limitations of the transducer employed (such as the
effective bandwidth of the pulse) coupled with the dispersive and attenuating properties of
human tissue lead to less than ideal data. Also, noise inherent in the system and incomplete
data sets (due to the geometry of receive arrays) can further limit the usefulness of imaging
systems. Therefore, image processing algorithms have recently been developed to restore the
degraded ultrasound data prior to the application of the inversion algorithm used to image
the tissue.

Imaging of human tissue can be performed by applying inverse scattering theory to the
measured scattered pressure field [1]. A rough approximation of the “soft-obstacle” problem
(e.g., tumorous tissue buried in fatty tissue) models the received far-field data as a convolu-
tion of the interrogating pulse and the impulse response of the medium. The ideal imaging
data would be produced by interrogating the medium with a Dirac-delta function; the qual-
ity of the measured data decreases as the effective bandwidth of the interrogating pulse
decreases. The physical limitations of transducers limits the pass-band of the interrogating
pulse and hence the effective bandwidth of the measured scattered field. Therefore, various
deconvolution methods have been employed to extend the bandwidth beyond the passband
of pulse emitted by the transducer. In particular, the use of deconvolution algorithms in
the quantitative imaging of human tissue could lead to increased resolution in medical ul-
trasound imaging systems. By first applying one of many deconvolution methods to the
measured scattering data, the effective spatial resolution of the reconstruction method (for
instance, filtered backpropagation [2] or multiple-frequency time-domain methods [3] [4]) can
be increased. Of particular interest is increasing the quality of reconstruction in the case of
limited-angle data [5] [6] in synthetic aperture imaging.

Deconvolution methods have found wide application is such fields as speech analysis,
seismic and geophysical applications, sonar, as well as biomedical imaging. In all these
applications, the following signal model is employed: given some measured data, h[n] and
possibly some “incident” signal f[n] determine a signal g[n] such that

hln] = f[n] * g[n] + p[n] (1)

where * denotes the operation of convolution and p[n] denotes some additive noise signal. The
case where f[n] is unknown is termed blind deconvolution and is generally far more difficult
than the case where f[n] is known. Due to the attenuating and dispersive properties of
human tissue, the interrogating pulse f [n] is not equal to the pulse emitted by the transducer;
therefore, pulse estimation [7][8] is often necessary for successful deconvolution of real data.




1.2 TIll-Posedness

As will be seen, the deconvolution problem is often ill-posed [9], meaning one of the following
criteria fails:

1. The solution g[n] exists.
2. The solution g[n] is unique.
3. The solution g[n] is stable (i.e. g[n] depends continuously upon the data hn]).

In most cases, it is the instability of the deconvolution that prevents the application of
a “simple-minded” deconvolution. To illustrate, let flnl,g[n] € 12 (square-integrable se-
quences). We can apply the well-known convolution theorem [10] and Fourier transform
(1) into the frequency domain, taking p[n] = 0. Denoting f[n] < f(w), g[n] « §(w), and
h[n] & h(w) yields:

h(w) = f(@)g(w) (2)
Solving for §(w) and inverse transforming gives:
_p ()
gin =¥ () ®)

where F~! denotes inverse Fourier transform. A
The problem with (3) is that for most signals under consideration, the ratio %%% 40

as |w| —+ oo, yielding undesired singularities in the recovered g[n]. Our solution is hence
unstable and the problem ill-posed. The addition of the noise term p[n] complicates the
problem further. To circumvent this problem, a number of deconvolution algorithms have
been devised, which will be the focus of this paper. The following methods, as applied to
ultrasound data, will be surveyed: regularized inverse filtering, homomorphic processing, and
alternating projections onto convex sets (POCS). Each of these methods provides unique
enhancements to the scattering data, along with its own problems (both theoretical and
numerical). However, these methods do not exhaust known deconvolution methods; other
methods such as wavelet analysis, maximum-likelihood deconvolution, and various adaptive
blind deconvolution methods exist and have been successfully applied in a multitude of fields
[11] [12] [13].




2 Regularized Inverse Filtering

2.1 Pulse Estimation Algorithm

Although the incident waveform f(t) is known a priori, in general a more realistic estimate for
the pulse is necessary that takes into account the attenuation and dispersion of the medium
[14]. Since all data sets employed here had far-field measurements in multiple directions, the
pulse could be estimated by averaging the magnitude spectrum over all received directions.
That is, the pulse f(¢) was estimated in the frequency domain via f(w) by

F) o [ 100,00 @

In the case of limited-aperture data, the integral is evaluated over the aperture interval. Note
that our pulse estimate does not require any phase information, and therefore our estimate
is unique only up to a phase factor. We therefore make the reasonable assumption that the
pulse is minimum-phase, which holds for the class of pulses considered.

Equation (4) can be justified by the following reasoning: denote the pulse, as it propagates
through the medium, by u(t) <+ @(w), and let the (ideal) measured impulse response be
denoted by g(6,t) <+ §(6,w). Taking into account an additive Gaussian noise term n(t) +
f{w), the frequency response of the measured pressure can be expressed as:

Ds(0, w) = 4(w)§(f,w) + A(w) (5)

Inserting equation (5) into (4) with the assumptions that n(t) is small with respect to u(t),
with a real spectrum yields:

F) o [ ()300,007 + 20(0) Re(aec)a(0,6) ©)

The frequency response §(,w) fluctuates randomly in frequency; however, when averaged
over many angular measurements, we can make the approximation i ST 19(0,w)|df ~ 1
(up to some multiplicative constant). That is, the averaged frequency response has an all-
pass spectrum within the bandwidth considered. Although this approximation is crude and
does not account for low-frequency attenuation, for sufficiently random medium with weak
scattering characteristics, it should suffice. With these simplifications, we have

F )PP~ [a(w)[? + 2[aw)||@(w)| (7)
A simple binomial approximation yields
o m (o (1 @)
ol i) 1+ ) ®)

so that, for a small noise spectrum, the averaged pulse f(t) has approximately the same
magnitude spectrum as the true pulse u(t). Also, we can take into account certain a priori
information about the pulse such as effective bandwidth, central frequency, and arrival times.
Combined, equation (4) provides a good pulse estimation for the construction of a stable
inverse filter. Moreover, it can be shown that the inverse filter constructed with the pulse
estimate in (4) is equivalent to the regularized inverse filter of the true pulse u(t).
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2.2 The Inverse Filter

From the pulse estimate in equation (4), we can construct an inverse filter via

If we assume the noise spectrum to be white, the approximation of the pulse in equation
(8) shows that the inverse filter I(w) is equivalent to a regularized inverse filter constructed
from the true pulse u(t). Thus, the filter in equation (9) can be used to execute a stable
deconvolution on the data p,(6,t). A sample inverse filter created from a pulse estimate is
shown in figure 2.

2.3 Construction of the Wiener Filter

The pulse estimate achieved by equation (4) can now be used to filter each recorded signal
in the frequency domain; however, artifacts will build up outside the effective bandwidth of
the pulse where noise predominates. To alleviate the problem, we can construct a Wiener
filter that takes into account the corruption of noise. Denoting the noise-to-signal ratio by
g, the Wiener filter W{(w) is given by:

)
W) = G T e (10)

From equation (8), we see that the noise-to-signal ratio ¢ ~ JI%(%)ZI[ is included in our pulse
estimate (4). As stated earlier, the pulse estimation method destroys the phase information,
so the Wiener filter implemented is simply:

@)l
11
[F)P +q 1y
The filter W(w) thus regularizes the ill-posed problem and gives a stable deconvolution.
Figure 1 is shows a Wiener filter constructed from the same pulse estimate (using a noise to
signal ratio of .01).

W(w) =




15 T T T T T T T T I

Gain (dB)

_10 L { 1} 1 | ! | I [
0 1 2 3 4 5 6 7 8 9 10

Frequency (MHz)

Figure 1: A Wiener filter constructed from a sample pulse estimate with g=.01. The filter
amplifies frequencies in the lower and upper passband of the pulse (passband 1.5 MHz,
centered at 2.5 MHz) while attenuating lower frequencies.
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Figure 2: An inverse filter constructed from a sample pulse estimate. The filter dramatically
amplifies frequencies below the passband of the pulse (passband 1.5 MHz, centered at 2.5
MHz) and those above the passband.




3 Cepstral Analysis and Homomorphic Filtering

3.1 Definitions and Formalism

A homomorphic system (K,*) satisfies a generalized superposition property; that is, there
exists some function (a homomorphism) ¢ : K — H such that Y(f*g) = ¥(f) +¢(g) for all
f,9 € K. The most commonly considered homomorphic system is the convolutional system;
the homomorphism for this system is:

¥(f) = F~*[Log(F[f])] (12)

Usually, we denote f = ¢(f) as the complex cepstrum. The cepstrum was introduced
by Bogert [15] for the problem of echo detection; the word “cepstrum” was chosen via
interchanging the letters in“spectrum” to show that the cepstrum lay somewhere between
the time-domain and the frequency-domain. By similar logic, Bogert termed the units in
the cepstral domain “quefrency” by interchanging the letters in “frequency.” Since most
cepstrum calculations are done numerically, the forward and inverse Fourier transforms in
(12) are replaced with forward and inverse z-transforms respectively [16]. Once the signal f
1s transformed into the cepstral domain, ideal low-pass or high-pass filtering can be applied
to get an estimate for either the incident pulse or impulse response of the system.

3.2 Implementation Problems

Formally, we define the complex cepstrum of a data sequence f[n] as the inverse z-transform
of the complex logarithm of the z-transform of the sequence (denoted by F(z)) via:

A 1
fn) = 5= § Log(P(2)2"'dz (13)
where the contour of integration lies within a region where the integrand is analytic and
single-valued [17]. Moreover, it can be shown that a finite, stable sequence possess a stable
cepstrum if and only if both its z-transform is non-zero on the unit circle and its phase is
continuous on the unit circle [18]. Obviously, this restriction raises problems for cepstrum
computations with band-limited signals. To circumvent this difficulty, band-limited signals
can be exponentially weighted via multiplication by the sequence 3" prior to the computation
to the cepstrum.
Another difficulty with cepstrum calculations are phase-wrapping artifacts. If we denote
the Fourier transform of f[n] (i.e. the z-transform evaluated along the unit circle) in terms

of its phase and magnitude: . o
F(e") = |F(e™)]e ) (14)

where ¢(w) denotes the wrapped phase. The log spectrum is thus given by:
F(e") = Log|F(e")| + ig(w) (15)

Since the z-transform must be analytic on the unit circle, it follows that the the function
$(w) must be continuous. However, digital phase computations are performed modulo 27,
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so the computed phase function ¢,(w) must be unwrapped in order to get an accurate
cepstrum calculation. The problem of phase unwrapping is non-trivial and, in the presence
of noise, ill-posed [19]. The phase unwrapping problem has motivated several novel methods
to calculate cepstra, such as the real cepstrum and complex cepstrum, which are discussed
below.

3.3 Real Cepstrum and Generalized Cepstrum
3.3.1 Real Cepstrum

The real cepstrum of a sequence f[n] is simply the inverse z-transform of the logarithm of

the modulus of the z-transform:

A 1
n) = —

j{}Log]F(z)]z”’ldz (16)

which drastically simplifies cepstral calculations by removing phase-unwrapping problems.
However, all phase information of the signal is lost in a real cepstrum calculation, making
the operation non-invertible in all cases where the signal is not minimum phase. Therefore,
the real cepstrum is only applicable to a homomorphic filtering scheme in the case where
the input is minimum phase (which, in the case of ultrasound data, cannot be guaranteed a

prior:).

3.3.2 Generalized Cepstrum

The generalized cepstrum [20] generalizes the complex cepstrum by using the mapping s.,(w)

defined by )
sy() = ~(w” = 1) (17)

instead of the complex logarithm. Since s, (w) — Log(w) as ¥ — 0, the generalized cepstrum
approaches the complex cepstrum for small . Similar to the inverse cepstrum, we can define
an inverse mapping s; ! via:

s w) =1+ 'yw)%f (18)

The generalized cepstrum effectively “smoothes” the data in the cepstral domain by adding
a convolved term. That is, the generalized cepstrum of a convolution becomes

Frg=F+g+~vf+*7 (19)

thus reducing artifacts caused by cepstral filtering.

3.4 An Analytic Calculation
3.4.1 Motivation and Definition

To give some insight into cepstral analysis, we present a simple “pencil and paper” deconvo-
lution in the non-discrete case. While, in practice cepstral calculations are always performed




digitally, we attempt here to define a cepstral operator for real and complex-valued functions
(in general, for generalized functions or distributions). For clarity, we summarize here some
basic definitions and facts from Fourier Analysis. For functions f(t) € S (good functions),
more generally, f(t) € L? (square-integrable functions) we can define the forward and inverse
Fourier transforms as follows:

3 L [t —iwt
f@) = FlrO] = o= [ " ft)eas (20)
FO=F ) = o= [ fl)ea 1)

In particular, it can be shown that the operators F : § — S and F : L2 — I2 are bijective
(along with their inverses) [21]. However, our calculations will often involve transforming
functions which are not good (indeed, unbounded). Therefore, we need to generalize our
space of functions to S’, or the space of tempered distributions [10]. On the space S’ we
can define the generalized Fourier transform (and its associated inverse) F' : &' — S’ and
F'~1: 8" — S defined as the adjoint of f (t) € S'. That is, the generalized transform f (w)
is defined by

<fip>=<fi> (22)
for any function ¥ € S. Of course, the generalized Fourier transform of a good function is

given by the classical formulas (20) and (21). Using this machinery, we can define a cepstral
operator C : S — S’ defined by

f(t) = CIf ()] = F'~* [Log(F'[f(1)))] (23)

where Log(2) denotes the complex logarithm. Note that a necessary condition for the ex-
istence of f(t) is f(w) # 0 for all w. Likewise, we can define the inverse cepstral operator
via

F(@) = CTHF(®)] = F"* [exp(F'[f(1)))] (24)

Now let f(2) and g(¢) be of class S’ such that f(t) and §(¢) exist. If we let h(t) := f(t)xg(t),
then it follows (using the convolution theorem and the properties of the logarithm) that

h(t) = F(t) + 3(¢) (25)

Thus, the cepstral operator transforms convolution in the time-domain into addition in the
cepstral domain. The function Log(z) in equation (23) homomorphically maps a product of
Fourier transforms into a superposition of log spectra. We will use this generalized super-
position of the cepstral operator to separate two signals convolved in the time-domain with
an appropriate filter in the cepstral domain.

3.4.2 Sample Calculation

Consider an incident pulse modeled by the function

F(t) = et/ (26)




and an impulse response of some medium given by an impulse train with N +1 terms

o) = Lt 1) @)
where we take a;y1 < a;Vj. Then the scattered field A(t) = f(¢) * g(¢), or
we) = [ $rgte = r)ar (28)
is given by
h(t) = iaie_(t_tf)z/@”?) (29)
=0

Our task now is, given equation (29), find the incident pulse f(t) and/or the impulse response
g(t). In many cases, we may have a priori knowledge of either f(t) or g(¢). For instance, we
may know f(t) to have a Gaussian envelope (with known bandwidth parameter o) or g(t)
to have compact support. In the ultrasound model, we can safely assume the interrogating
pulse f(t) to be smooth (n-times continuously differentiable) while g(t) is random-like and
hence non-differentiable. In this calculation, we take f(¢) € S and g(t) to have a sinusoidal
spectrum.

This information allows us to choose an appropriate filter in the cepstral domain. Just as
the Fourier transform indicates frequency content of a function, the support of the cepstrum
of a function measures the smoothness of the function. In fact, for the subset of good
functions which have a polynomial log spectrum, the cepstrum will have support only at the
origin. This fact follows from the Fourier pair Z;-\f__o a,jzj + Zfio ajé(j).

We can easily calculate the Fourier transform of (29), given by

N

2 g 2,2 ;

h(w) = —=—e"7“ /23" q;e 30
@)= 7= T (30)

which can also be obtained via transforming (26) and (27) and applying the convolution

theorem. Note that f(w) is non-zero for all real w, allowing the complex logarithm to be

taken. After some manipulation, we find the complex cepstrum to be

g 0'2 27

o=+ o)) + T8 () + 6(0) (31)

h(t) = (log(

where

é(t) = g(t)/ao (32)
Now ¢(t) is a series of impulses, with no support at the origin. Taking into account that
suppf(t) = {0}, we can filter h(t) with the function

() = ht)ift+#0
0ift=0
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giving

he(t) = ¢(2) (33)
Inversion of h.(t) is straightforward via application of (24), yielding the final result
N
he(t) = D_(a7)/(a0)d(t — t;) (34)
3=0

The above calculation can be specialized to an impulse response with only two spikes, pro-
viding insight into the cepstral filtering. The following calculations result (taking ¢, = 0 and
a; < agp):

h(t) = ape 120" 4 age—(t—0)?/(20%)
ﬁ(w) = _U_e—azwz/z(ao + aleiwtl)

V2r

g 0'2 27r "

Mﬂ=®dﬁﬁ+mﬁ@+ 50 (1) +o()
with
(al/ao)kd(t — tlk)

(-1
k

+00
¢m=§

Application of the filter A.(t) yields ¢(t), which clearly has no support at the origin. This
can be inverted back into the time domain to give

he(t) = 0(t) + (a1/a0)d(t — t1) (35)

Note that the recovered impulse response h.(t) differs from the original by a multiplicative

constant ag; that is, we have lost the “DC-component” of the impulse response during the

filtering process. Otherwise, this calculation completely separates the incident pulse from

the response using the assumption that the pulse has limited support in the cepstral domain.
Some comments about this calculation include:

1. Can we find sufficient conditions for any f € S’ to have a cepstrum f € $'? Can
we extend the sufficient condition for finite /> sequences for function in S, or more
generally, S'?

2. Since our data must be processed in a discrete fashion (and will invariably be contam-
inated by noise), the notion of “smoothness” becomes problematic. A more accurate
model for the incident pulse defined by (26) would include a sinusoidal varying term; if
the frequency of this term is high, the sampled version of f would lead to a non-smooth
pulse and our deconvolution scheme would break down.
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4 Projections onto Convex Sets

4.1 Background and the Fundamental Theorem

Projections onto Convex Sets provide a powerful framework for the construction of sig-
nal restoration and extrapolation algorithms. One of the first POCS algorithms was the
Papoulis-Gerschberg algorithm [22] used to extrapolate a known-segment of a band-limited
signal. Later, Youla and others [23] [24] [25] extended various isolated algorithms into a
general mathematical theory. All POCS methods utilize various a priori information about
the input and desired output, allowing a wide variety of implementations.

The general theory of vector space projections requires some basic knowledge of functional
analysis; a good introduction to the basics can be found in [26] and [27]. For conciseness,
we summarize some of the basic definitions and results.

We will work within the Hilbert space of square-integrable functions L?, which physically
denotes the space of finite-energy signals. The L? norm is defined by

1@l =y [ 17(@)d (36)

The L? norm defines a functional mapping a space of functions into a scalar field. Many
POCS problems can be formulated by considering the minimization of a functional. In
particular, the deconvolution problem modeled by (1) can be posed by minimization of the
functional J : L? — R, where

J = |[hln] — uln] * v[n]|l3 (37)

where h[n] is some known data. Minimization of J entails finding the optimal pairs of
functions u[n] and v[n]. Obviously, as it stands, the problem as posed will have an infinite
number of solutions. To restrict the solution set, we can define constraint sets C'y and Cj
that v and v must satisfy. Associated with each constraint set, we can define an orthogonal
projector that maps functions onto the constraint set. The following result tells us what
types of constraint sets are admissible in a POCS algorithm.

Let H be a Hilbert space and let C; with 1 <4 < m be closed convex subsets of H and
let Cy = N, C; denote the finite intersection of these sets. Now define F; : H — C; be the
projector onto C;. Define the composition projector P = P, Pp_; -+ P, Then the following
holds:

Theorem 4.1 Fundamental Theorem of POCS Let Cy be non-empty. Then for all z € H,
the sequence Pz converges weakly to a point Cy.

Thus theorem (4.1) assures the convergence of any POCS algorithm with well-defined con-
straint sets; however, unless Cy is a singleton set, the algorithm will not automatically
converge to a unique solution. Also, the rate of convergence may be exceedingly slow. To
accelerate the POCS algorithm, several researchers [28] [29] have refined POCS with the
introduction of relaxed projectors and other such improvements.

To devise a POCS algorithm for the ultrasound model, we incorporate both the con-
volutional model and certain a priori information about the pulse f[n] and the impulse
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response g[n], which we use to construct the constraint sets Cy and C,. For acoustical data,
more frequency-domain constraints are available, so the functional J in equation (37) can
be Fourier transformed via Parseval’s identity, yielding:

7 = 5-Ihw) — (w)0() 3 (38)

where i(w) € C; and 9(w) € C,. Once the constraint sets are found (and there associated
projectors), a POCS algorithm can be implemented which minimizes J in equation (38).

4.2 Constraints and Implementation

In order to achieve a stable deconvolution, we need to know maximum a priori information
about the data at hand. Far-field acoustic data can be especially problematic since it does not
have the most commonly considered properties (e.g., finite duration, strict band-limitation,
non-negativity, etc.). Therefore, we propose several novel constraint sets that could be useful
in a POCS algorithm.

4.2.1 Angle-Dependent Band-Limitation
Under the Born Approximation, the far-field frequency response of a 2D scatterer with a

spatially-varying sound-speed contrast (r) is given by [30]

272

ps(ex, 0,w) = *EeikszF(Ma —0l) (39)

where R is the far-field measurement radius and T'(k) is the spatial Fourier transform of
the contrast y(r). Since the object being imaged is of compact support (with radius a),
the contrast function y(r) will have an analytic Fourier transform. However, we can use an
uncertainty principle to estimate the effective “k-width” oy of I'(k). That is:

o ~ 1 (40)

Therefore, T'(k) is effectively zero for spatial frequencies greater that o;. Equating this
information with the argument in equation (39), we have

kelaa— 0] ~ 1 (41)
where k. is the spatial frequency cutoff. From this, we can easily deduce an angle-dependent

frequency cutoff given by
c 0—a
e — 42
o S (152 42)

From this cutoff estimate, we see that the forward-scatter case gives a broadband response,
while side and back scattering is band-limited. Equation (42) thus implicitly defines a band-
limited set, which is known to be both closed and convex.
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4.2.2 Low Bandwidth Envelope

Another possible frequency-domain constraint that could be applied is an upper bound on the
spectrum. In general, the wideband response of a scatterer with contrast (r) and support
Q) is given by

Poler,0,0) = KF(w) | Go(RO = x0,w)y(ro)p(r, ,10)d% (43)

where Go(w,r) is the frequency domain Green’s function for the reduced wave equation
(Helmholtz equation). By applying the Born approximation and the far-field approximation
for a cylinder of radius a, equation (43) becomes:

A i R 9 eichos(H—da) o ra » B
5u(0, 0,0) = KN == [ [l 9)e 0 Ordrag  (44)

Taking the modulus of both sides of (44) and approximating the integral with a n upper
bound I' = max~(r, ¢) yields the inequality

1, 2
Ipo(w)] < K2 F()y| == e’ (45)

which may be simplified to give

Ips(w)] < Kw®?|f(w)] (46)
where the constant K is given by
1 [27
== 4
K 1 chf‘a (47)

Equation (46) yields some a priori information about the scattered wave-field. Consider the
ideal case where the incident pulse f(t) = §(t); then |f(w)| = 1, implying that the frequency
response p; is bounded by an envelope proportional to w3/2. This bound allows us to enforce a
frequency-domain constraint in the case of low-bandwidth extrapolation (w < 27 fy), where
fo is the central frequency of the incident pulse employed. Also, equation (46) coupled with
Parseval’s identity allows us to find a bound on the energy of the signal.

4.2.3 Other A Priori Constraints

Since the basic characteristics of the pulse (e.g., effective bandwidth, central frequency,
linear phase, etc.) are known a priori, constraint sets could be defined which reflect these
parameters. For instance, a Gaussian envelope in the frequency domain could be used to
bound the spectrum. Other possibilities include energy constraints (in either the time or the
frequency domain) or angle-dependent amplitude limitation.
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5 Computational Techniques and Numerical Results

3.1 Description of Data and Reconstruction Algorithm

We tested the deconvolution algorithms on two synthetic far-field time-domain scattering
data sets computed via k-space method [31]. The first data set was generated from a cylinder
with random internal structure with added white, Gaussian noise with an SNR, value of 38.7
dB. The second data set was generated from a simulated breast model with sound speed
contrast mimicking fat and tissue. No artificial noise was added to the breast data. The
synthetic data was computed using N, transmit angles and Ny receive angles. The data sets
are summarized in tables 1 and 2. Both data sets used the time-domain waveform

f(t) = cos(2m fot)e ¥ /o) (48)

where fj is the central frequency and o is the temporal Gaussian parameter.

After the deconvolution algorithm was applied, a the time-domain reconstruction algo-
rithm outlined in [3] reconstructed the scatterers. The scattering configuration is shown
in figure 3. The far-field data p,(c, 6,¢) was used to reconstruct the sound-speed contrast
function v(r) via the formula

1 S
Y (r) = N—//(D(a,e) (ps(a,G, 7) +iH ! [p,(ex, O, T)]) dadw (49)
where the delay term 7 is given by
T:_}z_i_____(a—O)-r (50)
Co Co

the coefficient N is determined by a frequency weight incorporating the bandwidth of the
incident pulse f(t), H™! is the inverse Hilbert transform, and ®(c, §) is a “filter” dependent
upon the scattering geometry. In the case of 2D scattering, the filter is given by:

®(a,0) = |sin(6 — a)] (51)

The method embodied in equation (49) synthetically delays and sums all transmit angles o
and receive angles € to focus an image at position r, using all available bandwidth of the
incident pulse. Of special interest in deconvolving ultrasound data is its performance with
limited-aperture data; that is, when only a limited number of transmit and receive angles are
available. Therefore, we performed reconstructions at aperture width ¢,, where the integral
in equation (49) was evaluated over

ol < ¢ap/2 and |0 — 7| < ¢ap/2 (52)

For brevity, we call aperture widths ¢,, = 27 full, ¢,, = 7 half, and $ap = /2 quarter in
the descriptions of the reconstructions.

For reference, figures 5 and 6 show the raw far-field data reconstructed with no deconvo-
lution, while figure 4 shows the actual (non-imaged) models.
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Figure 3: Illustration of the scattering configuration employed. An incident pulse f(t—ar/c)
is scattered by some medium and the time-domain scattered pressure ps(a, 0,t) is measured
in the far-field at radius R and angle 6.

Central Frequency fo 2.5 MHz
Effective Bandwidth 1.5 MHz

Gaussian Parameter o .25 us
Sampling Frequency | 9.144 MHz
Number of Samples 84
Number of Receive Angles 256
Number of Send Angles 64

Radius of Cylinder 3.0 mm

Table 1: Summary for synthetic cylinder with random internal structure data.

Central Frequency 2.5 MHz
Effective Bandwidth 1.5 MHz
Gaussian Parameter ¢ .25 s
Sampling Frequency | 9.153 MHz
Number of Samples 256
Number of Receive Angles 512
Number of Send Angles 128
Radius of Breast 8.5 mm

Table 2: Summary of simulated breast data.
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Figure 4: The actual models: cylinder with random internal structure and the simulated
cross-section of a breast.

Figure 6: Full, half, and quarter aperture reconstructions of synthetic breast data.
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Figure 7: Full, half, and quarter aperture reconstructions of cylinder data deconvolved using
an inverse filter from a pulse estimate.

Figure 8: Full, half, and quarter aperture reconstructions of synthetic breast data decon-
volved using an inverse filter from a pulse estimate.

5.2 Inverse Filtering Results

The inverse filtering algorithms are both the simplest to implement and the most widely used.
We used both simple inverse filtering and a Wiener filter (i.e. regularized inverse filtering)
constructed from a pulse estimation using equation (4). For the regularized algorithm, we
use the parameter ¢ = .01. Figures 7 and 8 show the inverse filtered cylinder and breast
data (respectively) and figures 9 and 10 show Wiener filtered cylinder and breast data.

5.3 Homomorphic Filtering Results

As discussed above, homomorphic filtering is implemented in three steps:

1. The data (perhaps pre-processed via exponential weighing or the application of some
window) is transformed into the cepstral domain via one of the algorithms discussed
above.
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Figure 9: Full, half, and quarter aperture reconstructions of cylinder data deconvolved using
a Wiener filter created from a pulse estimate.

Figure 10: Full, half, and quarter aperture reconstructions of synthetic breast data decon-
volved using a Wiener filter created from a pulse estimate.
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Figure 11: Full, half, and quarter aperture reconstructions of cylinder data using a one-stage
cepstral deconvolution.

-

Figure 12: Full, half, and quarter aperture reconstructions of simulated breast data using a
one-stage cepstral deconvolution.

2. The cepstrum is either low-pass filtered (in order to recover the pulse) or high-pass
filtered (in order to recover the impulse response).

3. The filtered cepstrum is inverted back into the time domain.

Step 2 requires an estimate for a cepstral cutoff N,; that is, we must identify the quefrency
at which to apply the filter. To recover the pulse, for instance, we need an estimate of the
quefrency band which its cepstrum occupies.

5.3.1 Omne-Stage Deconvolution

Here we present a simple 1-stage deconvolution scheme based on long-pass filtering of the
complex and generalized cepstrum. The data was exponentially weighted by a factor 8 = .975
and high-pass filtered above N, = 7 for the cylindrical speckle data and N, = 21 for the
breast data. Instead of a hard cut in the cepstral domain, a cosine taper of width 4 was
applied. Figures 11 and 12 show the deconvolved reconstructions.
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Cepstral Cutoff (speckle) | N, 7
Cepstral Cutoff (breast) | N, | 21
Exp. Weighting Factor | £ | .975
Noise-to-Signal Ratio | ¢ | .001

Table 3: Parameters used in two-stage homomorphic deconvolution using the complex cep-
strum.

Figure 13: Full, half, and quarter aperture reconstructions of cylinder data deconvolved
using a two-stage homomorphic deconvolution.

5.3.2 Two-Stage Deconvolution

Here we present a 2-stage deconvolution method based on the complex and generalized
cepstrum. First the cepstrum of the data is calculated, then short-pass filtering is performed
to recover a pulse estimate. The short-passed cepstrum is then averaged over all receive
angles to get an improved pulse estimate. This final pulse estimate is used to construct
a Wiener filter. In the calculation of the complex cepstrum, exponential weighting with
parameter S was used to reduce phase wrapping. The exponential weighting changed the
signal-to-noise ratio, so the parameter ¢ in the Wiener filter had to be adjusted. This method
was repeated using the generalized cepstrum. Tables 3 and 4 show the parameters chosen.
The reconstructions using a complex cepstrum implementation are shown in figures 13 and
14 while those using the generalized cepstrum are shown in figures 15 and 16.

Cepstral Cutoff (speckle) | N, 7
Cepstral Cutoff (breast) | N, | 21
Cepstrum Exponent | v | .125
Noise-to-Signal Ratio | ¢ | .001

Table 4: Parameters used in two-stage homomorphic deconvolution using the generalized
cepstrum.
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Figure 14: Full, half, and quarter aperture reconstructions of synthetic breast data decon-
volved using a two-stage homomorphic deconvolution.

Figure 15: Full, half, and quarter aperture reconstructions of cylinder data deconvolved
using a two-stage homomorphic deconvolution with the generalized cepstrum.

Figure 16: Full, half, and quarter aperture reconstructions of synthetic breast data decon-
volved using a two-stage homomorphic deconvolution with the generalized cepstrum.
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6 Conclusions and Remarks

6.1 Comparison of Methods

Inverse and Wiener filtering provided good results which can serve as a benchmark with
which to compare other methods. For full aperture reconstruction, the Wiener filtered
data (figures 9 and 10) provided a clean deconvolution, revealing small amounts of detail
not present in the raw reconstruction. However, for half and quarter aperture sizes, the
reconstructions became contaminated by lateral blurring and noisy artifacts. Although the
unregularized inverse filtered data (figures 7 and 8) lost spatial resolution as the aperture
size decreased, the artifact build-up was not as severe as in the case of Wiener filtering.
Minimal internal features were still distinguishable even at quarter aperture. In fact, the
inverse filtered reconstruction provided the best limited-aperture reconstruction, giving the
most information about the imaged object. Perhaps the increased resolution at low aperture
width can be attributed to the low frequency amplification provided by the inverse filter
(figure 2), which is not present in the Wiener filter (figure 1).

The one-stage cepstral deconvolution (figures 11 and 12) attempted to separate the cep-
strum of the impulse response from that of the pulse via high-pass filtering (liftering) in the
cepstral domain. Most internal detail was lost at limited-aperture, although the boundaries
remained distinct. From the results we achieved, high-pass filtering of the cepstrum failed
as a viable deconvolution method.

From the numerical results presented above, the two-stage cepstral deconvolution (fig-
ures 13 and 14) does not give a degraded reconstruction at full aperture (unlike the other
methods). It is similar in quality to the raw reconstruction. However, in the limited aperture
reconstructions, broadband noise and severe lateral blurring builds up, making most internal
features indistinguishable. As the aperture shrinks to 7/2 radians, all internal features are
lost with only the boundary remaining distinct. The effect of using both the complex and
generalized cepstra in two-stage homomorphic filtering makes only a minimal difference in
reconstruction quality. More detail can be found on competing cepstral realizations in [14].

The cepstral methods suffer from a need to estimate parameters such as minimum phase
cutoff N, and exponential weighting parameter 8. It seems, however, that these parameters
are dependent only upon the scattering configuration and the pulse waveform employed, thus
independent of the medium being investigated.

Of the methods presented above, we must conclude that inverse filtering is the most
viable deconvolution method. None of the methods provided significant improvement over
no deconvolution at full aperture, yet inverse filtering preserved useful detail at half and
quarter aperture, whereas all other methods failed. We attribute this to the pulse estimation
algorithm, which incorporates both noise regularization and amplification at low frequencies.
The Wiener filter apparently does not provide enough low frequency amplification to usable
limited-aperture reconstructions. Likewise, the homomorphic filtering schemes do not give
a strong enough deconvolution to provide a useful limited-aperture reconstruction.
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6.2 Problems and Further Work

As we have seen, the acoustic deconvolution problem is highly non-trivial and there is much
work to be done before any one algorithm can be used in a clinical installation. Inverse
and Wiener filtering provide good results while having a low computational cost and simple
implementation. The easiest way to improve an inverse filtering scheme is provide a better
pulse and noise-to-signal estimate. The accuracy of the inverse filtering scheme at limited
aperture provides evidence for the pulse estimation algorithm embodies in equation (4).
Perhaps advances in inverse filtering could therefore start with a more precise estimation.

In the case of homomorphic deconvolution, the problem of phase unwrapping and the
the computational realization of the cepstrum are persistent. Phase unwrapping is highly
sensitive to noisy data and poses a severe problem to cepstrum calculations. Also, estimation
of the parameters used in homomorphic filtering is largely ad hoc; although estimates from
the rise-time of the log spectrum [7] and spatial extent of the pulse [14] have been proposed,
there is presently no accurate way to estimate the cepstral cutoff N, short of trial and error.
Also, both the generalized and continuous-time cepstrum are not well-understood.

POCS algorithms have been widely applied in such fields as optics, spectral analysis, and
digital communications, but their introduction into acoustic signal processing has been slow.
Perhaps this is due to the lack of a priori information available to construct constraint sets;
although the analytical work done on acoustic scattering is enormous, the mathematical
complexities involved do not lend themselves easily to simple constraints. Other difficulties
with POCS include the large number iterations often necessary for convergence, which could
limit real-time implementation.

In summary, the deconvolution of ultrasound data is not fully understood and much work
is needed for an algorithm that gives good results from limited data. From our research, it
appears that work can be done in two directions: designing better inverse filters and finding
a viable POCS implementation. Both directions hope to provide exciting areas of research.
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APPENDIX K

3:00~-3:15 Break

Contributed Papers

3:15

4pBB4. Simulation of ultrasonic propagation, scattering, and
attenuation in the human chest wall. T. Douglas Mast (Appl. Res.
Lab., Penn State  Univ.,, University  Patk, PA 16802,
mast@sabine.acs.psu.edu), Laura M. Hinkelman (Penn State Univ.,
University Park, PA 16802), and Robert C. Waag (Univ. of Rochester,
Rochester, NY 14627)

A finite-difference time-domain model for ultrasonic pulse propaga-
tion through soft tissue [Mast ef al., J. Acoust. Soc. Am. 102, 1177-1190
(1997)] has been extended to incorporate absorption effects as well as
longitudinal-wave propagation in cartilage and bone. This extended
method has been used to simulate ultrasonic propagation through anatomi-
cally detailed chest wall models. The inhomogeneous chest wall structure
is represented by two-dimensional tissue maps determined by staining
chest wall cross sections to identify connective tissue, muscle, fat, carti-
lage, and bone, scanning the stained cross sections at 300 dpi, and pro-
cessing the scanned images to assign a tissue type to each pixel. Each
pixel of the tissue map is then assigned a sound speed, density, and ab-
sorption value determined from published measurements to be representa-
tive of the local tissue type. Computational results for wavefront distortion
including amplitude fluctuations, arrival time fluctuations, and waveform
distortion show qualitative agreement with measurements performed on
the same specimens [Hinkelman et al., J. Acoust. Soc. Am. 101, 2365-
2373 (1997)]. Visualization of simulated tissue-ultrasound interactions in
the chest wall shows possible mechanisms for image aberration in
echocardiography, including effects due to reflection and diffraction from
rib structures.

3:30

4pBB5. Coupled thermal-acoustic simulation results  with
temperature-dependent tissue parameters for therapeutic ultrasound.
Ibrahim M. Hallaj (Appl. Phys. Lab., Univ. of Washington), Robin O.
Cleveland, Ronald A. Roy, and R. Glynn Holt (Boston Univ., Boston,
MA)

Recently the authors used direct simulations of the transient acoustic
pressure field to calculate heat energy deposition and, thus, temperature
ficlds in two-dimensional tissue like media {J. Acoust. Soc. Am. 102,
3172(A) (1997)]. It is known that acoustic-induced temperature rises will
alter the properties of the medium in hyperthermia situations. In this pre-
sentation the simulations are extended to simultaneously solve the wave
propagation and tissue heating problems so that the effect of temperature-
dependent tissue parameters can be accounted for directly. In other words,
there is a continuous feedback of temperature on the sound propagation
parameters, which in turn affects the thermal energy deposition. The simu-
lations are second order accurate in time, fourth order in space full wave
calculations using the finite-difference time-domain technique, and allow
for finite-amplitude wave propagation in an inhomogeneous, thermovis-
cous fluid. The model allows for spatially and temporally varying sound
speed, density, attenuation coefficient, and nonlinearity parameter, as well
as variable thermal properties and perfusion. Acoustic pressure, thermal
dose, and tissue temperature are calculated, and conclusions are made
regarding qualitative and quantitative aspects of focusing behavior con-
trasted to the case where the propagation and thermal parameters are kept
constant. [Work sponsored by ONR and DARPA.]

3:45

4pBB6. Bubble-mediated hyperthermia in an instrumented tissue
phantom. Patrick Edson, R. Glynn Holt, and Ronald A. Roy (Dept. of
Acrosp. and Mech. Eng., Boston Univ., Boston, MA 02215)

The coagulation of blood by ultrasound, a procedure termed acoustic
hemostasis by us, involves the contributions of several physical and bio-
physical effects. To investigate these effects, experiments have been un-
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dertaken involving rapid hyperthermia in an instrumented tissue phantom.
Previously, the authors have reported a sharp increase in the rate of heat-
ing with increasing peak negative insonation pressure [J. Acoust. Soc. Am.
103(A) (1998)]. This increase occurs at a well-defined pressure, a thresh-
old effect not unlike that observed at the onset of inertial acoustic cavita-
tion. It was postulated that this effect may be the result of such cavitation
activity leading to bubble-enhanced heating. The results of experiments in
which the temperature rise and cavitation activity are monitored simulta-
neously are reported. The results will be interpreted in the light of the
aforementioned cavitation effect, as well as competing explanations such
as the excess absorption associated with the formation of nonlinearity in
the pressure profile. [Work supported by DARPA.]

4:00

4pBB7. Ultrasonic periodontal probe. Mark Hinders, Alan Guan, and
John Companion (Appl. Sci. Dept., College of William and Mary,
Williamsburg, VA 23187)

This talk discusses proof of concept in vitro testing of an ultrasonic
probe for imaging periodontal structures. This technique allows accurate
measurements of disease activity for patient risk assessment and treatment
outcome evaluation without the need for ionizing radiography or manual
periodontal probing. This technique promises reduced variability and im-
proved ease of use, in comparison to conventional manual periodontal
probing. The work discussed here is the first step to establish the ultra-
sound periodontal probe as a clinically valuable tool for patient assessment
and the first noninvasive measure of periodontal disease activity. Data
from cadaver samples using a prototype intraoral ultrasound instrument is
compared to conventional manual probing subsequently performed on the
annotated cadaver samples. The results discussed here are being used to
refine the technique, improve the analysis of scan signals, and develop the
framework of the software that will be used during a subsequent in vitro
testing program.

4:15

4pBBS. An estimation technique of the vector component of blood
flow from Doppler information on a plane. Shigeo Ohtsuki (Precision
and Intelligence Lab., Tokyo Inst. of Technol., Midori-ku Nagatsuta 4259,
Yokohama, 226-8503 Japan)

The information of the ultrasonic Doppler effect is the velocity com-
ponent of ultrasonic scatters in the direction of the ultrasonic beam in
fluid. Scanning the ultrasonic beam, a colored Doppler image can be ob-
tained on a plane. Using this data, the velocity component perpendicular to
the ultrasonic beam is estimated. In this case, the observation plane is in
three-dimensional flow. Considering sources of fluid in the plane, the flow
function method [S. Ohtsuki and M. Tanaka, J. Visual. Soc. Jpn. 1869,
40-44 (1998)] is applied. This flow function method was developed for
streamlines on a medical ultrasonic colored Doppler image of blood flow
in the heart. The flow function without sources is expressed as a single-
valued function. The flow function of sources is a multi-valued function
named a laminar function. The flow function on an observation plane is
the combination of these two functions. The gradient of the flow function
on the plane is a flow vector component. The estimation technique intro-
duced here is an application of the flow function method.
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8:40

2aPAb3. Atomic force acoustic microscopy: Acoustical imaging on the nm scale. Ute Rabe and Sigrun Hirsekorn (Fraunhofer
Inst. for Nondestructive Testing, Bldg. 37, Univ., D-66123 Saarbruecken, Germany, rabe@izfp.fhg.de)

High-resolution imaging techniques are important tools in materials evaluation and nondestructive testing. Conventional acoustical
imaging techniques allow the determination of elastic properties and defect detection with a spatial resolution dependent on the
wavelength of the imaging ultrasound. Research work over the last years has shown that this limit can be overcome by combining
atomic force microscopy (AFM) with acoustic microscopy. Inducing ultrasonic vibrations in the contact formed by the sample surface
with the sensor tip of an AFM opens its high lateral resolution to ultrasonic imaging. Different measurement techniques in which
linear and nonlinear effects play a role are possible and have been demonstrated experimentally. An overview of the imaging
techniques will be given. Theoretical models which allow the explanation of the image contrast and the derivation of quantitative
surface qualities will be discussed.

9:00

2aPAb4. Material characterization using micro-machined air transducers. Butrus T. Khuri-Yakub, F. Levent Degertekin, Sean
T. Hansen, and Neville R. Irani (Stanford Univ., E. L. Ginzton Lab., Stanford, CA 94305, khuri-ya@ec.stanfordAedu)

This paper presents the application of micro-machined ultrasonic air transducers (MUT) to material characterization. The trans-
ducers are made of thin membrane capacitors with very thin vacuum gaps. A system analysis that details the design of the transducers
and the transmitter and receiver electronics to deliver over a 100-dB dynamic range while operating in the 1-5-MHz range is
presented. The transducers and electronics system are used both in pulse—echo and pitch—catch modes to evaluate materials. In
transmission and reflection, the system is used to image defects in carbon epoxy composites. Transducers are designed, using Lamb
wave theoretical calculations, to excite selected Lamb wave modes in composite and other materials. The transducers are then used to
characterize the composites with respect to defect detection (via Lamb wave velocity changes) and material characterization (via
slowness curve inversion).

9:20

2aPAbS5. Imaging with a 16 000-element 2-D array. Ken Erikson and Tim White (Lockheed Martin, 2 Forbes Rd., Lexington, MA
02421)

Imaging with acoustical lenses in the low MHz frequency range using fully populated 2-D arrays offers the potential for
high-resolution, real-time, 3D volume imaging, together with low power and low cost. A 2-D composite-piczoelectric receiver array
bonded directly to a large custom-integrated circuit is the enabling technology for a new implementation of the original acoustical
imaging paradigm. This 128X 128 (16 384 total) element transducer hybrid array (THA) uses massively parallel, on-chip signal
processing and is intended for medical and underwater imaging applications. The system under development, which is the acoustical
analog of a video camera, will be discussed in this paper.

9:40-10:00 Break

Contributed Papers

10:00

2aPAb6. Time-domain ultrasound diffraction tomography. T.
Douglas Mast (Appl. Res. Lab., Penn State Univ., University Park, PA
16802, mast@sabine.acs.psu.cdu)

A quantitative ultrasonic imaging method employing time-domain
scattering data is presented. This method provides tomographic images of
inhomogeneous media using scattering measurements made on a surface
surrounding the medium of interest, ¢.g., on a circle for two-dimensional
problems or on a sphere for three-dimensional problems. These scattering
data are used to construct a time-domain analog of the far-field scattering
operator. Images of compressibility variations are then reconstructed using
a coherent combination of the far-field scattered waveforms, delayed and
summed in a manner that numerically focuses on the unknown medium.
This approach is closely related to synthetic aperture imaging; however,
unlike conventional synthetic-aperture methods, the present method pro-
vides quantitative reconstructions of compressibility variations, analogous
to frequency-compunded filtered backpropagation images weighted by the
spectrum of the incident wave. Example reconstructions, obtained using
synthetic data for two-dimensional scattering of wideband pulses, show
that the time-domain reconstruction method can provide image quality
superior to single-frequency reconstructions for objects of size and con-
trast relevant to medical imaging problems such as ultrasonic mammog-
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raphy. Reconstructions also illustrate the dependence of image quality on
the number of incident-wave insonifications and on the range of scattering
angles available for measurements.

10:20

2aPAb7. Transient elastography in biological tissues. Laurent
Sandrin, Stefan Catheline, and Mathias Fink (ESPCI—LOA, 10 rue
Vauquelin, 75005 Paris, France, laurent.sandrin@espci.fr)

Elastography is used in different ways to characterize soft tissues.
Ophir uses static elastography to estimate strains in the tissue after a
quasi-static compression. Strains can also be measured by sonoelasticity
using mechanically forced low-frequency vibrations and the ultrasonic
pulsed Doppler method (Parker and Sato). These techniques are subjected
to bias due to unknown boundary conditions. In this article a technique
called transient elastography is presented which is not sensible to bound-
ary conditions. It uses a low-frequency pulsed vibration (~100 Hz) and a
cross-correlation technique to measure displacements on the order of
1 wm. This technique was first developed for one-dimensional measure-
ments on the axis of the ultrasonic transducer. It is now used with an array
of 64 transducers to get time-dependent two-dimensional displacements at
a rate of 2000 frames per second. Movies of the shear wave propagation
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of large acoustic lenses provides zoom and focal plane control for magnified imaging with enhanced resolution and depth. Both
systems have undergone preliminary investigation in large groups of patients with known abnormalities to assess their suitability for
detection and characterization of breast disease and to provide accurate guidance for biopsy or tumor ablation. Results of laboratory
and clinical findings will be presented.

9:20

2aBB3. Recent progress on nonuniform fast Fourier transform algorithms and their applications. Q. H. Liu, B. Tian, X. Xu,
and Z. Q. Zhang (Dept. of Elec. Eng., Duke Univ., Durham, NC 27708-0291)

Recently, nonuniform fast Fourier transform (NUFFT) algorithms have received significant attention [Dutt and Rokhlin, STAM J.
Sci. Stat. Comput, 14, 13681393 (1993)]. Unlike the regular fast Fourier transform (FFT) algorithms, the NUFFT algorithms allow
the data to be sampled nonuniformly. The leading order of the number of arithmetic operations for these NUFFT algorithms is
O(N log, N). Here, we review the recent progress of the NUFFT algorithms using the regular Fourier matrices and conjugate-gradient
method for the forward and inverse NUFFT algorithms [Liu and Nguyen, IEEE Microwave Guid. Wave Lett. 8, 18-20 (1998); Liu
and Tang, Electron. Lett. 34, 1913-1914 (1998)]. Because of their least-square errors, these NUFFT algorithms are about one order
of magnitude more accurate than the previous algorithms. These NUFFT algorithms have been applied to develop the nonuniform fast
Hankel transform (NUFHT) and nonuniform fast cosine transform (NUFCT) algorithms. Both NUFFT and NUFHT algorithms have
been used to solve integral equations in computational electromagnetics and acoustics; The NUFCT has been used to solve time-
dependent wave equations. Numerical examples will demonstrate the efficiency of the fast transform algorithms, and the applications
in computational electromagnetics and computational acoustics.

9:45
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2aBB4. Noncontact ultrasonic imaging for the evaluation of thermal injury. Joie P. Jones (Dept. of Radiological Sci., Univ. of
California—Irvine, Irvine, CA 92697-5000)

Although conventional wisdom suggests that ultrasonic imaging of the body cannot be accomplished without direct contact (or at
least via water coupling), we have shown that noncontact imaging through air is possible, certainly for superficial body regions,
provided judicious choices of piezoelectric materials and matching layers are made. In preliminary experiments and clinical studies
reported here, noncontact imaging is demonstrated for the evaluation of thermal injury (including the quantitative measurement of
burn-depth), for the assessment of wound healing, and for the examination of assorted skin lesions. Specifically, in the case of thermal
injury, reflections from the dermal/fat interface in human skin is clearly seen using a noncontact 5-MHz transducer. Such measure-
ments are sufficient to determine burn-depth which, in turn, are sufficient to provide, for the first time, a quantitative and noninvasive
method for burn evaluation and treatment specification. Evaluating over 500 burn sites in some 100 patients, noncontact ultrasound
showed a much greater accuracy and sensitivity than standard clinical assessment. Our method is applicable to a conventional clinical
environment as well as a battlefield situation and should prove particularly effective for large-scale medical triage.

10:10-10:20 Break

Contributed Papers

10:20

2aBB5. Focus-directed processing of acoustic holography images.
Ruming Yin, Shira L. Broschat (School of Elec. Eng. and Computer Sci.,
Washington State Univ., P.O. Box 642752, Pullman, WA 99164-2752),
and Patrick J. Flynn (The Ohio State Univ., Columbus, OH 43210-1272)

Acoustic holography is a transmission mode imaging technique which
was first proposed in the 1970s. As with optical holography, an image is
obtained using coherent interference of the transmitted acoustic signal
with a reference signal. The interference pattern is illuminated with a
laser, and the resulting image is digitized. However, since image recon-
struction is performed optically, acoustic holography introduces a focusing
problem characteristic of optical systems. Ideally, an image is focused on
tissues at a given depth along the optical axis—that is, in one planar slice
of the object. In practice, the image is focused over a range of depths so
that objects at different depths are blurred but still visible. In this paper,
we consider several postprocessing algorithms developed to improve im-
ages obtained using an acoustic holography system. First, a focus measure
technique is used to determine when the object of interest is best focused.
Second, a technique called depth from focus is used to determine the depth
of an object. Third, a technique is developed to increase the *‘in focus™
interval, or focusing range. These techniques will be discussed and imag-
ing results will be presented. [Work supported by the National Science
Foundation and the Carl M. Hansen Foundation.]
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10:35

2aBB6. A new k-space method for simulation of ultrasonic
propagation in tissue. T. Douglas Mast (Appl. Res. Lab., Penn State
Univ., University Park, PA 16802, mast@sabine.acs.psu.edu), D.-L.
Donald Liu (Siemens Medical Systems, Issaquah, WA 98027), Laurent
P. Souriau, Adrian I. Nachman, and Robert C. Waag (Univ. of Rochester,
Rochester, NY 14642)

A new k-space method for large-scale computations of ultrasonic
propagation is presented. In the new method, spatial derivatives from the
second-order acoustic wave equation for inhomogeneous media are evalu-
ated by Fourier transformation. Solutions are advanced in time using a
k—t space Green’s function. Computational results indicate that the new
method shares advantages of both past k-space and pseudospectral meth-
ods. For scatterers with properties similar to soft tissue, the k-space
method provides much higher accuracy and lower computational cost than
a 24 finite-difference time domain method. The k-space method also
allows high accuracy to be obtained for time steps much larger than those
required by a leapfrog pseudospectral method. The low dispersion inherent
to the k-space method is illustrated by large-scale quasi-one-dimensional
computations, in which pulse waveforms incur negligible shape change for
propagation distances as large as 1000 wavelengths. Example applications
of the k-space method are demonstrated, including simulation of propaga-
tion through a large-scale tissue cross-sectional model and incorporation
of a k-space solver into a nonlinear inverse scattering method employing
eigenfunctions of the far-field scattering operator.
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TIME-DOMAIN INVERSE SCATTERING FOR
QUANTITATIVE ULTRASONIC MAMMOGRAPHY

T. Douglas Mast

Applied Research Laboratory
The Pennsylvania State University

mast@sabine.acs.psu.edu

A new method for ultrasonic mammography is presented. This method provides quantitative
tomographic images of inhomogeneous tissue using time-domain scattering measurements
made on a surrounding surface (for example, on a circle for images of a two-dimensional
breast cross section). High-resolution, quantitative images of tissue are reconstructed using
coherent combination of far-field scattered ultrasound waveforms, delayed and summed to
focus at each image point. The focused image is a reconstruction of the spatially-dependent
sound speed variation, and is equivalent to a wideband filtered backpropagation
reconstruction weighted by the spectrum of the incident wave. The resulting images are

higher in quality than frequency-domain quantitative reconstructions and contain more
diagnostic information than conventional B-scans.

Rigorous testing of the new imaging method is carried out using simulated ultrasonic
propagation through breast tissue. Breast tissue models are obtained both from segmentation
of stained cross sections and from analysis of high-resolution three-dimensional data from the
Visible Woman project. Computations of ultrasonic propagation are performed using a new
k-space method, in which the spatial differential equations are solved by Fourier
transformation and temporal iteration is performed using a k-f space propagator. Numerical
results indicate that this method is highly accurate for large-scale soft-tissue computations,
with much greater efficiency than that of competing methods. Thus, the k-space method is
particularly appropriate for large-scale two-dimensional and three-dimensional computations
of propagation through breast tissue.

Quantitative images, obtained using synthetic data for two-dimensional and three-dimensional
scattering of wideband pulses as well as measured scattering data from a 2048-element ring
transducer, confirm that the time-domain reconstruction method provides superior image
quality for objects of size and contrast relevant to ultrasonic mammography. The new method
can also be extended to incorporate available image-enhancement techniques, such as
time-gain compensation to correct for medium absorption and aberration correction methods

to reduce error associated with weak scattering approximations.

The US Army Medical Research and Materiel Command under DAMD17-98-1-8141




supported this work.




TIME-DOMAIN INVERSE SCATTERING FOR
QUANTITATIVE ULTRASONIC MAMMOGRAPHY

T. Douglas Mast

Applied Research Laboratory
The Pennsylvania State University

New methods for breast cancer detection and characterization are the focus of this project,
supported by the US Army Medical Research and Materiel Command. Major goals are to
establish a new high-resolution, quantitative ultrasonic imaging method and to test this
method using simulated propagation of ultrasonic pulses through accurately detailed breast
tissue models.

Detailed breast tissue models have been obtained both from stained breast cross sections and
from analysis of high-resolution three-dimensional data from the Visible Woman project. To
accurately compute ultrasonic propagation through these tissue models, a new k-space method
for ultrasound simulation has been developed. The k-space method is more accurate, more
efficient, and requires less storage than alternative methods, and is thus ideal for computation
of large-scale 2D and 3D ultrasonic propagation in breast tissue.

A new time-domain ultrasonic mammography method provides quantitative images of
inhomogeneous media including breast tissue. High-resolution maps of the tissue sound
speed are obtained from processing of measured ultrasonic scattering. Unlike previous
frequency-domain inverse scattering methods, the entire signal bandwidth is used, so that
reconstructed images have higher point resolution (ability to detect small structures such as
microcalcifications) and contrast resolution (ability to distinguish subtle differences between
tissue structures). The new method employs a straightforward time-domain reconstruction
algorithm, similar to synthetic-aperture methods used by current clinical scanners, but
provides much more diagnostic information than current B-scan devices. The high efficiency
of the reconstruction algorithm makes the new method particularly well-suited for three-
dimensional quantitative ultrasonic mammography.

Quantitative images, obtained both from synthetic and measured ultrasound data, confirm that
the new imaging method provides superior image quality and accurate quantitative
information. After further development and clinical implementation, the new ultrasonic
mammography method is expected to become competitive with magnetic resonance imaging
and x-ray computed tomography as a tool for breast cancer detection and characterization,




while maintaining inherent advantages of ultrasound such as lower cost, ability to characterize
cystic and solid lesions, and safe, nonionizing radiation.




10:30

3aBB7. Aberration-corrected time-domain ultrasound diffraction
tomography. T. Douglas Mast (Appl. Res. Lab., Penn State Univ.,
University Park, PA 16802)

The inverse scattering problem of reconstructing a spatially dependent
sound speed variation from far-field time-domain acoustic scattering mea-
surements is considered. Such reconstructions are quantitative images with
applications including ultrasonic mammography. Although the linearized
time-domain inverse scattering problem is shown to have no general so-
lution for finite signal bandwidth, an approximate solution to the linear-
ized problem is constructed using a simple delay-and-sum method analo-
gous to ‘‘gold standard’’ ultrasonic beamforming. The form of this
solution suggests that the full nonlinear inverse scattering problem can be
approximated by applying appropriate angle- and space-dependent time
shifts to the time-domain scattering data; this analogy leads to a general
approach to aberration correction. Two related methods for aberration cor-
rection are presented: one in which delays are computed from estimates of
the medium using an efficient straight-ray approximation, and one in
which delays are applied directly to a time-dependent linearized recon-
struction. Numerical results indicate that these correction methods achieve
substantial quality improvments for imaging of large scatterers. [Work
supported by the Breast Cancer Research Program of the U.S. Army
Medical Research and Materiel Command.]

10:45

3aBB8. Theoretical considerations for the use of microbubbles as
point targets for phase aberration correction. Dimitris Psychoudakis
(Elec. Eng. and Computer Sci., Univ. of Michigan, Ann Arbor, MI
48109-2122), J. Brian Fowlkes, John L. Volakis, Oliver D. Kripfgans, and
Paul L. Carson (Univ. of Michigan, Ann Arbor, MI 48109-0553)

Bubbles can be produced by vaporization of perfluorocarbon droplets
of a few um diameter. These bubbles can reach up to 100 gm in diameter
and their backscatter is calculated to be more than 10 dB above that of
several organ tissues. At these sizes and for diagnostic frequencies (28
MHz), bubbles can be approximated by the nonrigid sphere scattering
solution employed here. This presentation concerns the bubble size and its
implications on the backscatter amplitude and the phase error introduced
in diagnostic ultrasound when assuming that the bubble acts as a point
target for phase aberration correction. The phase error is the difference
between the phase at each location along the receiving aperture relative to
that at the aperture center, compared with the same relative phase for a
perfect point target. Evaluations were made of the phase error with respect
to a range of transducer f-numbers (0.5-2.0) for a specific bubble size (30
pm radius) and at certain frequencies (28 MHz). For example, at 5 MHz
the phase error introduced by the point target assumption is maximally 5
deg, while the phase error of breast tissue scattering is around 160 deg.
[Work supported by PHS Grant No. ROIHL54201 from the National
Heart, Lung, and Blood Institute.]

11:00

3aBBY. Comparison between time reversal and spatio-temporal
inverse filter application to focusing through a human skull. Mickael
Tanter, Jean-Francois Aubry, Jean-Louis Thomas, and Mathias Fink
(Laboratoire Ondes et Acoustique, ESPCI, Paris VII Univ., Paris, France)

Ultrasonic imaging systems capabilities are strongly dependent on the
focusing quality of the ultrasonic beam. In the case of brain imaging, the
skull strongly degrades the ultrasonic focusing pattern by introducing
strong phase and amplitude aberrations of the wave-front. In previous
work, this degradation of the beam focus had been partially corrected by
coupling the time reversal focusing process to an amplitude compensation
of the emission signals. In that case, the optimal focus was reproduced
down to —20 dB, but the sidelobe level remained at about —25 dB. This
elegant technique will be compared to another focusing technique recently
developed in our laboratory, called spatio-temporal inverse filtering.
Thanks to this method, based on the inversion of the propagation operator
at each frequency within the bandwidth of our transducers, experimental
focusing through the skull is now comparable to optimal focusing in a
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homogeneous medium. Those two methods not only differ theoretically,
but also suffer differently from all the experimental defects, such as the
limited bandwidth of the transducers or the limited aperture of the arrays.
A comparson of the results obtained with both techniques in water and
through a human skull clearly highlights the advantages and the draw-
backs of each method.

11:15

3aBBI10. Integrated matrix arrays. Ken Erikson, Jason Stockwell, and
Robert McPhie (BAE Systems, P.O. Box 868, Nashua, NH 03061-0868)

Improved image quality requires the use of matrix (nXm) arrays with
a thousand or more clements. As element numbers increase and their
dimensions grow smaller, limitations to present fabrication technologies
arise. Cost, ergonomics, produceability, and reliability are important is-
sues. Signal loss due to the capacitance of interconnecting coax cables
becomes a fundamental problem. Connecting an integrated circuit directly
to the array elements alleviates all these problems. Each unit cell of such
a custom transmitter/receiver integrated circuit (TRIC) may have high
voltage switches for transmitting; a preamplifier which minimizes signal
loss due to capacitance in coax cables and a multiplexer to send the array
signals over fewer wires. Additional signal processing and beam forming
may also be included. Issues with currently available arrays are reviewed.
The new technology for direct connection of arrays to IC’s is described.
The paper concludes with speculation about future possibilities of this
approach.

11:30

3aBB11. Measurements of the spatial coherence of the fundamental
and second-harmonic beams for a clinical imaging system. Russell J.
Fedewa, Kirk D. Wallace, Mark R. Holland (Lab. for Ultrason., Dept. of
Phys., Washington Univ. of St. Louis, One Brookings Dr., St. Louis, MO
63130), James R. Jago, Gary C. Ng, Matthew R. Rielly, Brent S.
Robinson (ATL Ultrasound, Bothell, WA 98041-3003), and James G.
Miller (Lab. for Ultrason., Washington Univ. of St. Louis, St. Louis, MO
63130)

Spatial coherence of backscattered signals underlies correlation-based
phase aberration corrections. The van Cittert—Zernike theorem relates
frequency-independent spatial coherence to the autocorrelation of the
transmit apodization. Previous studies suggest that the mainlobe of the
nonlinearly generated harmonic beam is wider and exhibits lower side-
lobes than a beam linearly generated at the harmonic frequency. The ob-
jective of this study was to measure the spatial coherence associated with
fundamental and nonlinearly generated harmonic beams. Using data ex-
perimentally acquired from a clinical scanner (ATL HDI5000), two inde-
pendent methods were employed to measure the spatial coherence. One
approach measured the spatial coherence of backscatter from a tissue-
mimicking phantom using tf signals from individual elements of a linear
array. In the second approach, the effective apodization was determined by
a linear angular spectrum backpropagation of hydrophone-sampled data
from a transverse plane in the focal zone. The results show that the effec-
tive apodization of the nonlinearly generated harmonic beam is more ag-
gressive than the actual transmit apodization. The spatial coherence asso-
ciated with the second-harmonic beam differs from the spatial coherence
of the fundamental beam, but is predicted by the effective apodization.
[Supported in part by NTHHL40302 & ATL.]

11:45

3aBB12. Efficient computation of field of 2-D array with limited
diffraction array beams. Jian-yu Lu and Jiqgi Cheng (Ultrasound Lab,
Dept. of Bioengineering, The Univ. of Toledo, Toledo, OH 43606,
jilu@eng.utoledo.edu)

Two-dimensional (2-D) arrays are useful for improving quality of
three-dimensional (3-D) medical imaging in ultrasound. Beams produced
with a 2-D array are usually simulated with the Rayleigh—Sommerfeld
diffraction formula (RSDF). In general, the RSDF requires a 2-D integra-
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APPENDIX L

T. Douglas Mast

Senior Biomedical Engineer, Ethicon Endo-Surgery,
4545 Creek Rd. ML 40, Cincinnati, OH 45242
(513) 337-3144 (tel.), (513) 337-4144 (fax), dmast@eesus.jnj.com

Technical Expertise

Ultrasonic imaging, wave propagation and scattering in inhomogeneous media, physical acoustics, inverse
scattering, numerical methods, flow/sound interaction, bioacoustics, nondestructive evaluation.

Education

Ph.D. in Acoustics, The Pennsylvania State University, 1993. Thesis: Physical Theory of Narrow-Band
Sounds Associated with Aneurysms. Advisor: Allan D. Pierce. GPA: 3.93/4.0.

Certificate (comparable to B.A.) in Music, The Naropa Institute, 1988.
B.A. in Physics and Mathematics, Goshen College, 1987. GPA: 3.89/4.0.

Present and Recent Employment

Senior Biomedical Engineer, Ethicon Endo-Surgery (a Johnson and Johnson Company), 2001—present.

Research Associate and Assistant Professor of Acoustics, Applied Research Laboratory, The Pennsylvania
State University, 1999-2001.

Research Associate, Applied Research Laboratory, The Pennsylvania State University, 1997—1999.
Postdoctoral Scholar, Applied Research Laboratory, The Pennsylvania State University, 1996—-1997.
Postdoctoral Fellow, Ultrasound Research Laboratory, University of Rochester, 1993—1996.
Research Asst., Graduate Program in Acoustics, Pennsylvania State University, 1988—1993.
Research Asst., Turner Laboratory of Precision X-Ray Measurements, Goshen College, 1986-1987.
Teaching Asst., Department of Physics, Goshen College, 1985-1987.

Honors, Awards and Society Affiliations

President, Central Pennsylvania Chapter of the Acoustical Society of America, 1999-2000.
Vice President, Central Pennsylvania Chapter of the Acoustical Society of America, 1998-1999.
Listed in Who's Who in Science and Engineering.

Kenneth E. Simowitz Memorial Award, The Pennsylvania State University, 1996.

F. V. Hunt Fellowship, Acoustical Society of America, 1994-1995.

Kenneth E. Simowitz Memorial Citation, The Pennsylvania State University, 1992.

General Electric Teaching Incentive Loan, 1990.

Turner Laboratory Fellowship, Goshen College, 1986.

Member of Acoustical Society of America.

Member of American Institute of Ultrasound in Medicine.
Member of Institute of Electrical and Electronics Engineers (Ultrasonics, Ferroelectrics, and Frequency
Control Society).

Courses Taught

Acoustic Scattering (ACS 597C), Penn State Graduate Program in Acoustics, Spring 2000.

Scattering in Inhomogeneous Media (ACS 598E), Penn State Summer Program in Acoustics, to be taught
Summer 2001.




Other Professional Activities
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Served on Diagnostic Imaging Study Section for National Institutes of Health, 1999-2000.
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Other Activities and Interests

Volunteer DJ for Penn State NPR radio station, WPSU.
Volunteer and Board Member for Acoustic Brew folk concert series.
Musician: tenor banjo, mandola, and tenor guitar player in string band Steele Hollow.

Research in genealogy (Amish/Mennonite origins).
Recreational computer programming.




